目标检测 模型部署
文章平均质量分 73
种一颗树最好的时间是是十年前,其次是现在
爱钓鱼的歪猴
今天不学习,明天变垃圾
展开
-
01-深度学习模型部署介绍
感兴趣,可以多看工程落地的一些知识(C++、Makefile、cmake、编译相关、SDK),多参与一些实际项目攒攒经验,多熟悉一些常见的大厂造的部署轮子(libtorch、TensorRT、openvino、TVM、openppl、Caffe等),尝试转几个模型(ONNX)、写几个op(主要是补充,性能不要最优)、写几个前后处理、debug下各种奇葩的错误,让模型可以顺利在一些平台跑起来,平台可以在PC、手机、服务器等等;最近对模型部署很感兴趣,发现这些东西书上没有,所以在网上整理一些在这里,欢迎交流。原创 2023-04-18 12:53:03 · 460 阅读 · 0 评论 -
【已解决】opencv 交叉编译 ffmpeg选项始终为NO
在交叉编译时候,发现在 pc 端能用 opencv 打开的视频,但是在 rv1126 上打不开。在网上查了很久,原因可能是 ffmpeg 造成的。尝试了一天还是第二个博客的样子,ffmpeg组件是yes,但是ffmpeg是NO,很迷惑!原创 2023-10-01 23:15:09 · 3645 阅读 · 0 评论 -
【bug 记录】yolov5_C_demo 部署在 rv1126
在 CMakeLists 中将正确的 OpenCV库 路径添加到 CMAKE_PREFIX_PATH 变量中。将该文件从别处复制到项目 include 文件夹。link 时直接用绝对路径。原创 2023-09-30 16:03:37 · 808 阅读 · 0 评论 -
【大体思路】rv1126 跑通 yolov5
目标:yolov5_coco_rv1126.rknn ---> yolov5_coco_rv1126_pre.rknn。yolov5_detet_demo C++ 代码 ---> yolov5_detect_demo 可执行文件。目标:yolov5_coco.onnx ---> yolov5_coco_rv1126.rknn。1、加载docker镜像,rknn-toolkit-1.7.3-docker.tar.gz。4、模型转换,内存够大 【rknn_convert.py】3、将编译结果复制到板卡上。原创 2023-09-30 10:58:53 · 1106 阅读 · 0 评论 -
yolov5部署 单线程与多线程对比
main.cpp这里是单线程,每帧获取耗时200ms左右,也就是fps大概为5;原创 2023-08-13 16:28:10 · 1071 阅读 · 1 评论 -
【详细记录】rv1126 跑通 yolov5
在前面,已经将 onnx模型转为 rknn模型。这里探讨的是:rknn模型在rv1126开发板上运行。原创 2023-08-02 11:01:44 · 3525 阅读 · 1 评论 -
yolov5 onnx模型 转为 rknn模型
这一步是把准备好的一些图片,生成图片路径的文本文件,在构建RKNN模型的时候有用处。通过使用真实的样本数据集,RKNN工具可以更好地理解和建模模型的输入数据,从而更好地优化网络结构、权重和量化方案。这一步如果是在虚拟机上运行的话,8GB的内存条win10系统也要用,分配给虚拟机的没多少,3GB也不够执行这一步。后来我直接在Ubuntu系统执行这一步,8GB系统用一点还剩6.7GB,CPU和内存直接干满。还是在docker环境 模型转换工作目录,运行rknn_convert.py。为映射到docker镜像。原创 2023-07-28 22:05:44 · 4212 阅读 · 1 评论 -
YOLO-NAS C++部署 2023.5.17
这不最近新出了网络,YOLO-NAS,听过性能和速度都不错,而且int8量化后效果也不错。原创 2023-05-18 09:35:38 · 1323 阅读 · 7 评论 -
YOLOv8 人体姿态估计(关键点检测) python推理 && ONNX RUNTIME C++部署
这里的8400,表示有8400个检测框,56为4边界框坐标信息+原创 2023-05-12 01:08:18 · 12219 阅读 · 18 评论 -
YOLOv6 4.0 使用记录: OpenCV DNN C++推理
yolov6n 推理速度确实比yolov5n快一点,检测的物体更多(平放的书本也检测出来了),但是存在一定的误检,可能修改置信度阈值能好点?但是我看 ONNX/export_onnx.py的置信度阈值设置还可以。暂时不知道如何改进,如有大佬知道,烦请留言觉得写得不错,厚脸皮要个赞,哈哈哈手把手教你运行YOLOv6(超详细)_Mr Dinosaur的博客-CSDN博客。原创 2023-05-04 16:30:29 · 976 阅读 · 0 评论 -
双目测距--5 双目相机 联合 YOLOv8
基于以上两个结果,可以用立体矫正后的图像,作为YOLOv8的输入图像。YOLOv8 ONNX RUNTIME 部署代码中的utils.cpp中有一个函数需要作修改。运用SGBM算法得到的视差图,其尺寸与立体矫正后的图像尺寸不一致,如获取深度图代码信息输出图。视差图由SGBM算法获得,深度信息图由reproJectImageTo3D()函数获得。参数6:默认值为0,用户传给回调函数的数据值。参数4:表示滑块达到最大位置的值。参数5:默认值为0,指向回调函数。参数3:滑块初始位置。原创 2023-05-07 21:59:58 · 3616 阅读 · 28 评论 -
yolov8 ONNX Runtime C++ 部署
运行效果:输入为640*640,CPU推理耗时100ms左右速度比yolov5快一点但是也可以把手识别成人??应该可以根据使用情况把detect.h中的分类阈值提高一点,可以解决误识别的 问题。原创 2023-05-05 21:19:06 · 7370 阅读 · 12 评论 -
yolov8 OpenCV DNN 部署 推理报错
yolov8是yolov5作者发布的新作品。原创 2023-05-04 20:12:20 · 4071 阅读 · 7 评论 -
yolov5 OpenCV DNN c++ 部署
我用摄像头直接读取处理,发现yolov5n 运行起来有点卡,AMD R5300H CPU 的耗时是150ms左右,而 同样设备Pytorch Python 推理 只有几十ms耗时!欢迎留言、欢迎交流!原创 2023-04-19 21:50:31 · 931 阅读 · 3 评论 -
Yolov5 ONNX Runtime 的 C++部署
1、运行总结:如果你把onnx格式模型路径、类别文件路径、图像路径写对后,可能还是跑不起来,代码中需要修改一下如果运行出现下面这样的报错:那就直接把模型输入输出的名字写进去:2、运行速度我这次用的是yolov5-6.2版本的yolov5n模型,在C++上用onnxtime部署,用视频大概检测其推理速度,发现onnxruntime比opencv dnn快一些。不过还是没有pytorch python快。3、项目通用性另外如果你用的是其他模型,要套这个项目的话,你得知道输出信息,然后进行修改。原创 2023-04-19 21:24:02 · 1812 阅读 · 4 评论 -
Yolov5 ONNX Runtime 的 Python 部署
这里使用的yolov5 6.2,使用export.py很方便地得到onnx格式的模型。然后用onnxruntime推理框架在Python上进行部署。主要是为了测试模型的准确,整个代码分为四个部分:1、对输入进行预处理;2、onnxruntime推理得到输出;3、对输出进行后处理 4、画预测框。代码的难点是nms处理。代码尚存在的缺陷是,将输入图像处理至模型输入尺寸大小时没有使用等比例缩放,对效果可能有点影响。的最终是用 C++ 部署,从而部署在嵌入式设备等。代码中有详细注释,不懂的可以在下面留言。原创 2023-04-19 01:21:24 · 2395 阅读 · 5 评论