5-1树与二叉树-二叉树树的存储结构

【二叉树的顺序存储】

用一组地址连续的存储单元依次自上而下,自左至右存储完全二叉树上的结点元素,即将完全二叉树上编号为i的结点元素存储在一位数组下标为i-1的分量中

1.适于:完全二叉树、满二叉树

2.优点:树中结点的序号可以唯一的反应结点之间的逻辑关系,最大可能地节省了存储空间,又能利用数组元素的下标值确定结点在二叉树中的位置,以及结点之间的关系

3.缺点:对于一般的二叉树,需要添加一些并不存在的空结点,让其每个结点与完全二叉树上的结点相对照,会造成空间浪费,即使在结点数量较少时也需要申请大量空间

在这里插入图片描述

#define MaxSize 100
struct TreeNode {
	ElemType value;//实际要存的数据元素
	bool isEmpty;//该节点是否为空结点
};
TreeNode t[MaxSize];
for(int i=0;i<MaxSize;i++){
	t[i].isEmpty=true;
}

【二叉树的链式存储】

用链表结点来存储二叉树中的每个结点。在二叉树中,结点结果通常包括若干数据域和若干指针域,二叉链表至少包含3个域:数据域data,左指针域lchild和右指针域rchild

1.优点:存储结构比价灵活,可以动态的申请空间,可以灵活的增加指针来存储信息,可以比较方便的找到左右孩子,减少了空间浪费

2.缺点:找父节点需要从根节点开始遍历,因此需要增加一个parent指针指向其父节点
在这里插入图片描述

typedef struct BiTNode {
	ElemType data;
	struct BiTNode* lchild, * rchild;
}BiTNode,*BiTree;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卡__卡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值