常见数学函数模板

欧拉线性筛

//欧拉线性筛
int primes[MAXN];//从primes[1]开始记录 
bool book[MAXN];//合数为true
int cnt;//素数的个数 
void eulershai(int n){//计算1~n的素数
	for(int i=2;i<=n;i++){
		if(!book[i]) primes[++cnt]=i;//如果没有筛过,记录素数
		for(int j=1;j<=cnt;j++){
			if(primes[j]*i>n) break;//保证小于n,要不然没有意义
			book[i*primes[j]]=1;//筛去这个合数
			if(!i%primes[j]) break;//如果>=这个数的最小质因子,那就结束
		}
	}
}

判断单个数是否为素数

//判断单个数是否为素数
bool isprime(int x){
	for(int i=2;i*i<=x;i++){
		if(x%i==0)return false;
	}
	return true;//是素数则返回true
}

快速幂

//快速幂
ll pow(ll x, ll n, ll mod){//n是次数
    ll res = 1;
    while(n){
        if(n&1){
            res = res * x % mod;
        }
        x = x*x % mod;
        n >>= 1;
    }
    return res;
}

矩阵快速幂

//矩阵快速幂
#define size 3
struct Matrix{
	ll a[size][size];
	Matrix(){
		memset(a,0,sizeof(a));
	}
};

Matrix mul(Matrix A,Matrix B)//矩阵相乘 
{
	Matrix C;//C矩阵来存新的矩阵 
	for(int i=0;i<size;i++)
		for(int j=0;j<size;j++)
			for(int k=0;k<size;k++)
				C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j])%mod;
				
	return C;//返回新矩阵 
}

Matrix pow_mod(Matrix A,ll n)
{
	Matrix B;
	for(int i=0;i<size;i++)//初始化单位矩阵 
		for(int j=0;j<size;j++)//为什么单位矩阵?E*A=A,等效于数字 1*a=a 
			B.a[i][j]=i==j?1:0;
	while(n)//快速幂 
	{
		if(n&1)	B=mul(B,A);
		A=mul(A,A);
		n=n>>1;	
	}
	return B;
}
Matrix T;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值