欧拉线性筛
//欧拉线性筛
int primes[MAXN];//从primes[1]开始记录
bool book[MAXN];//合数为true
int cnt;//素数的个数
void eulershai(int n){//计算1~n的素数
for(int i=2;i<=n;i++){
if(!book[i]) primes[++cnt]=i;//如果没有筛过,记录素数
for(int j=1;j<=cnt;j++){
if(primes[j]*i>n) break;//保证小于n,要不然没有意义
book[i*primes[j]]=1;//筛去这个合数
if(!i%primes[j]) break;//如果>=这个数的最小质因子,那就结束
}
}
}
判断单个数是否为素数
//判断单个数是否为素数
bool isprime(int x){
for(int i=2;i*i<=x;i++){
if(x%i==0)return false;
}
return true;//是素数则返回true
}
快速幂
//快速幂
ll pow(ll x, ll n, ll mod){//n是次数
ll res = 1;
while(n){
if(n&1){
res = res * x % mod;
}
x = x*x % mod;
n >>= 1;
}
return res;
}
矩阵快速幂
//矩阵快速幂
#define size 3
struct Matrix{
ll a[size][size];
Matrix(){
memset(a,0,sizeof(a));
}
};
Matrix mul(Matrix A,Matrix B)//矩阵相乘
{
Matrix C;//C矩阵来存新的矩阵
for(int i=0;i<size;i++)
for(int j=0;j<size;j++)
for(int k=0;k<size;k++)
C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j])%mod;
return C;//返回新矩阵
}
Matrix pow_mod(Matrix A,ll n)
{
Matrix B;
for(int i=0;i<size;i++)//初始化单位矩阵
for(int j=0;j<size;j++)//为什么单位矩阵?E*A=A,等效于数字 1*a=a
B.a[i][j]=i==j?1:0;
while(n)//快速幂
{
if(n&1) B=mul(B,A);
A=mul(A,A);
n=n>>1;
}
return B;
}
Matrix T;