【python】numpy中的np.dot(),np.matmul(), np.multiply(), np.prod(), * , @ 的区别

5.16

#15 numpy中的np.dot(),np.matmul(), np.multiply(), np.prod(), * , @ 的区别

  1. np.dot():向量内积(矩阵乘法)
  2. np.matmul():矩阵乘法
  3. np.multiply():对应元素相乘
  4. np.prod():矩阵某维度的元素乘积
  5. *:等价于np.multiply()
  6. @:等价于np.matmul()

比如:

(1) np.dot()

>>> a = np.array([1,2,3,4])
>>> b = np.array([2,1,2,4])
>>> np.dot(a,b)
26

(2) np.matmul()和@

>>> A = np.array([[1,2,3],
...               [2,3,4],
...               [1,0,0]])
>>> B = np.array([[1,0,0],
...               [0,1,1],
...               [0,0,1]])
>>> np.matmul(A,B)
array([[1, 2, 5],
       [2, 3, 7],
       [1, 0, 0]])
>>> A@B
array([[1, 2, 5],
       [2, 3, 7],
       [1, 0, 0]])
>>> np.matmul(B,A)
array([[1, 2, 3],
       [3, 3, 4],
       [1, 0, 0]])
>>> B@A
array([[1, 2, 3],
       [3, 3, 4],
       [1, 0, 0]])

(3) np.multiply()和*

>>> A = np.array([[1,2,3],
...               [2,3,4],
...               [1,0,0]])
>>> np.prod(A)
0
>>> np.prod([[1,2],[3,4]])
24
>>> np.prod(A,axis=1)
array([ 6, 24,  0])
>>> 
>>> np.multiply(2,A)
array([[2, 4, 6],
       [4, 6, 8],
       [2, 0, 0]])
>>> 
>>> 2*A
array([[2, 4, 6],
       [4, 6, 8],
       [2, 0, 0]])
>>> 
>>> np.multiply(2,1)
2

备注:其实输入二维矩阵到np.dot()也能实现矩阵运算,但不推荐这样做,尽量让专门的函数做专门的事情

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值