普里姆算法详解

应用场景-修路问题

看一个应用场景和问题:

1) 有胜利乡有 7 个村庄 (A, B, C, D, E, F, G) ,现在需要修路把 7 个村庄连通
2) 各个村庄的距离用边线表示 ( ) ,比如 A – B 距离 5 公里
3) 问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短 ?

思路: 10条边,连接即可,但是总的里程数不是最小.

正确的思路,就是尽可能的选择少的路线,并且每条路线最小,保证总里程数最少.

 

最小生成树

修路问题本质就是就是最小生成树问题, 先介绍一下最小生成树(Minimum Cost Spanning Tree),简称MST

1) 给定一个带权的无向连通图 , 如何选取一棵生成树 , 使树上所有 边上权的总和为最小 , 这叫最小生成树
2) N 个顶点,一定有 N-1 条边
3) 包含全部顶点
4) N-1 条边都在图中
5) 举例说明 ( 如图 :)
6) 求最小生成树的算法主要是 普里姆
算法和克鲁斯卡尔算法

 

普里姆算法介绍

1) 普利姆 (Prim) 算法求最小生成树,也就是在包含 n 个顶点的连通图中,找出只有 (n-1) 条边包含所有 n 个顶点的连通子图,也就是所谓的 极小连通子图
2) 普利姆的算法如下 :
(1) G=(V,E) 是连通网, T=(U,D) 是最小生成树, V,U 是顶点集合, E,D 是边的集合 
(2) 若从顶点 u 开始构造最小生成树,则从集合 V 中取出顶点 u 放入集合 U 中,标记顶点 v visited[u]=1
(3) 若集合 U 中顶点 ui 与集合 V-U 中的顶点 vj 之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点 vj 加入集合 U 中,将边( ui,vj )加入集合 D 中,标记 visited[ vj ]=1
(4) 重复步骤②,直到 U V 相等,即所有顶点都被标记为访问过,此时 D 中有 n-1 条边
(5) 提示 : 单独看步骤很难理解,我们通过代码来讲解,比较好理解 .

图解:

 

代码实现:

package com.liu.prim;

import java.util.Arrays;

public class Prim {

	public static void main(String[] args) {
		//测试看看图是否创建ok
		char[] data = new char[]{'A','B','C','D','E','F','G'};
		int verxs = data.length;
		//邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
		int [][]weight=new int[][]{
            {10000,5,7,10000,10000,10000,2},
            {5,10000,10000,9,10000,10000,3},
            {7,10000,10000,10000,8,10000,10000},
            {10000,9,10000,10000,10000,4,10000},
            {10000,10000,8,10000,10000,5,4},
            {10000,10000,10000,4,5,10000,6},
            {2,3,10000,10000,4,6,10000},};
            
        //创建MGraph对象
        MGraph graph = new MGraph(verxs);
        //创建一个MinTree对象
        MinTree minTree = new MinTree();
        minTree.createGraph(graph, verxs, data, weight);
        //输出
        minTree.showGraph(graph);
        //测试普利姆算法
        minTree.prim(graph, 1);// 
	}

}

//创建最小生成树->村庄的图
class MinTree {
	//创建图的邻接矩阵
	/**
	 * 
	 * @param graph 图对象
	 * @param verxs 图对应的顶点个数
	 * @param data 图的各个顶点的值
	 * @param weight 图的邻接矩阵
	 */
	public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
		int i, j;
		for(i = 0; i < verxs; i++) {//顶点
			graph.data[i] = data[i];
			for(j = 0; j < verxs; j++) {
				graph.weight[i][j] = weight[i][j];
			}
		}
	}
	
	//显示图的邻接矩阵
	public void showGraph(MGraph graph) {
		for(int[] link: graph.weight) {
			System.out.println(Arrays.toString(link));
		}
	}
	
	//编写prim算法,得到最小生成树
	/**
	 * 
	 * @param graph 图
	 * @param v 表示从图的第几个顶点开始生成'A'->0 'B'->1...
	 */
	public void prim(MGraph graph, int v) {
		//visited[] 标记结点(顶点)是否被访问过
		int visited[] = new int[graph.verxs];
		//visited[] 默认元素的值都是0, 表示没有访问过
//		for(int i =0; i <graph.verxs; i++) {
//			visited[i] = 0;
//		}
		
		//把当前这个结点标记为已访问
		visited[v] = 1;
		//h1 和 h2 记录两个顶点的下标
		int h1 = -1;
		int h2 = -1;
		int minWeight = 10000; //将 minWeight 初始成一个大数,后面在遍历过程中,会被替换
		for(int k = 1; k < graph.verxs; k++) {//因为有 graph.verxs顶点,普利姆算法结束后,有 graph.verxs-1边
			
			//这个是确定每一次生成的子图 ,和哪个结点的距离最近
			for(int i = 0; i < graph.verxs; i++) {// i结点表示被访问过的结点
				for(int j = 0; j< graph.verxs;j++) {//j结点表示还没有访问过的结点
					if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
						//替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
						minWeight = graph.weight[i][j];
						h1 = i;
						h2 = j;
					}
				}
			}
			//找到一条边是最小
			System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
			//将当前这个结点标记为已经访问
			visited[h2] = 1;
			//minWeight 重新设置为最大值 10000
			minWeight = 10000;
		}
		
	}
}

class MGraph {
	int verxs; //表示图的节点个数
	char[] data;//存放结点数据
	int[][] weight; //存放边,就是我们的邻接矩阵
	
	public MGraph(int verxs) {
		this.verxs = verxs;
		data = new char[verxs];
		weight = new int[verxs][verxs];
	}
}

 

  • 4
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只猪的思考

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值