原理与推导过程:
代码实现(sklearn自带数据集, iris鸢尾花):
# k近邻算法
# 0. 引入依赖
import numpy as np
import pandas as pd
#这里直接引入sklearn里的数据集, iris鸢尾花
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split # 切分数据集为训练集和测试集
from sklearn.metrics import accuracy_score # 计算分类预测的准确率
# 1. 数据加载和预处理
iris = load_iris()
df = pd.DataFrame(data = iris.data, columns = iris.feature_names) # 将数据换成表格形式
df['cla