K近邻算法(KNN)原理推导与实例代码实现详解(Python)

本文深入探讨K近邻算法的原理,并通过Python的sklearn库,使用iris鸢尾花数据集进行实战代码演示,展示了KNN算法在机器学习中的应用。
摘要由CSDN通过智能技术生成

原理与推导过程:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码实现(sklearn自带数据集, iris鸢尾花):

# k近邻算法


# 0. 引入依赖
import numpy as np
import pandas as pd
#这里直接引入sklearn里的数据集, iris鸢尾花
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split  # 切分数据集为训练集和测试集
from sklearn.metrics import accuracy_score  # 计算分类预测的准确率



# 1. 数据加载和预处理
iris = load_iris()
df = pd.DataFrame(data = iris.data, columns = iris.feature_names)   # 将数据换成表格形式
df['cla
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值