线性回归从零开始实现


前言

博客主要将李沐大神的《动手学pytorch》中的代码进行了详细的注释,为了自己以后复习的时候方便。


一、导入包和模块

导入所需的包或模块,其中的matplotlib包可用于作图,且设置成嵌入显示。

import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random

二、生成数据集

我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别。设训练数据集样本数为1000,输入特征数为2。给定随机生成的批量样本特征X\epsilon \mathbb{R}^{^{1000\times 2}},线性回归模型的真实权重w=[2,-3.4]^{T},偏差b=4.2,以及一个随机噪声项\epsilon来生成标签

y=Ww+b+\epsilon

其中噪声项\epsilon服从均值为0,标准差为0.01的正态分布。

# 特征数量为2
num_inputs = 2
# 样本数量为1000
num_examples = 1000
# 回归模型真实权重
true_w = [2, -3.4]
# 回归模型偏差
true_b = 4.2
# 特征图形状[1000,2],数据类型float32
features = torch.randn(num_examples, num_inputs,
                       dtype=torch.float32)
# 标签y=2*所有样本的第一个特征——3.4*所有样本的第二个特征
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
# 标签中加入随机噪声,噪声服从均值为0方差为1的正态分布,尺寸和标签尺寸相同,数据类型为torch.float32
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()),
                       dtype=torch.float32)

通过生成第二个特征features[:, 1]和标签 labels 的散点图,可以更直观地观察两者间的线性关系。

def use_svg_display():
    # 用矢量图显示
    display.set_matplotlib_formats('svg')

def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    # 设置图的尺寸
    plt.rcParams['figure.figsize'] = figsize

set_figsize()
plt.scatter(features[:, 1].numpy(), labels.numpy(), 1);

三、数据读取

在训练模型的时候,我们需要遍历数据集并不断读取小批量数据样本。这里我们定义一个函数:它每次返回batch_size(批量大小)个随机样本的特征和标签。

def data_iter(batch_size, features, labels):
    num_examples = len(features)  # 样本个数为特征图的数据长度
    indices = list(range(num_examples))  # 建立列表用以存放样本
    random.shuffle(indices)  # 样本的读取顺序是随机的
    for i in range(0, num_examples, batch_size):  # 用for循环逐批次的选取数据
        j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) # 最后一次可能不足一个batch
        yield  features.index_select(0, j), labels.index_select(0, j)

让我们读取第一个小批量数据样本并打印。每个批量的特征形状为(10, 2),分别对应批量大小和输入个数;标签形状为批量大小。

# 每小批量样本个数为10
batch_size = 10

for X, y in data_iter(batch_size, features, labels):
    print(X, y)
    break

输出:

 四、初始化模型参数

这里要初始化的模型参数为w和b

将权重w初始化为均值为0,标准差为0.01的正态随机数,数据类型为float32

偏差b初始化为0,数据类型为float32

# 初始化权重w
w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, 1)), dtype=torch.float32)
# 初始化偏差b
b = torch.zeros(1, dtype=torch.float32)

之后的模型训练中,需要对这些参数求梯度来迭代参数的值,因此我们要让它们的requires_grad=True

w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True) 

五、定义模型

下面是线性回归的矢量计算表达式的实现。我们使用mm函数做矩阵乘法。

def linreg(X, w, b): 
    return torch.mm(X, w) + b

六、定义损失函数

我们使用平方损失来定义线性回归的损失函数。在实现中,我们需要把真实值y变形成预测值y_hat的形状。以下函数返回的结果也将和y_hat的形状相同。

平方损失公式:

def squared_loss(y_hat, y):  # 本函数已保存在d2lzh_pytorch包中方便以后使用
    # 注意这里返回的是向量, 另外, pytorch里的MSELoss并没有除以 2
    # y.view(y_hat.size())把真实值y变形成预测值y_hat的形状
    return (y_hat - y.view(y_hat.size())) ** 2 / 2

 七、定义优化算法

以下的sgd函数实现了小批量随机梯度下降算法。它通过不断迭代模型参数来优化损失函数。这里自动求梯度模块计算得来的梯度是一个批量样本的梯度和。我们将它除以批量大小来得到平均值。

# params为更新的参数。lr为学习率
# 自动求梯度模块计算得来的梯度是一个批量样本的梯度和,将它除以批量大小来得到平均值
def sgd(params, lr, batch_size): 
    for param in params:
        param.data -= lr * param.grad / batch_size # 注意这里更改param时用的param.data

八、模型训练

在训练中,我们将多次迭代模型参数。在每次迭代中,我们根据当前读取的小批量数据样本(特征X和标签y),通过调用反向函数backward计算小批量随机梯度,并调用优化算法sgd迭代模型参数。由于我们之前设批量大小batch_size为10,每个小批量的损失l的形状为(10, 1)。由于变量l并不是一个标量,所以我们可以调用.sum()将其求和得到一个标量,再运行l.backward()得到该变量有关模型参数的梯度。注意在每次更新完参数后不要忘了将参数的梯度清零。

在一个迭代周期(epoch)中,我们将完整遍历一遍data_iter函数,并对训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设3和0.03。在实践中,大多超参数都需要通过反复试错来不断调节。虽然迭代周期数设得越大模型可能越有效,但是训练时间可能过长。

lr = 0.03  # 学习率
num_epochs = 3  # 迭代周期
net = linreg
loss = squared_loss

for epoch in range(num_epochs):  # 训练模型一共需要num_epochs个迭代周期
    # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)。
    # X和y分别是小批量样本的特征和标签
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y).sum()  # l是有关小批量X和y的损失
        l.backward()  # 小批量的损失对模型参数求梯度
        sgd([w, b], lr, batch_size)  # 使用小批量随机梯度下降迭代模型参数

        # 不要忘了梯度清零
        w.grad.data.zero_()
        b.grad.data.zero_()
    train_l = loss(net(features, w, b), labels)
    print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))

训练输出:

epoch 1, loss 0.000054
epoch 2, loss 0.000054
epoch 3, loss 0.000054

训练完成后,我们可以比较学到的参数和用来生成训练集的真实参数。它们应该很接近。

参考书目:《动手学深度学习》(pytorch版) 李沐 著

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值