文献介绍

文献题目: Systematic comparison of sequencing-based spatial transcriptomic methods
研究团队: 田鲁亦(广州实验室)、刘晓东(西湖大学)
发表时间: 2024-07-04
发表期刊: Nature Methods
影响因子: 36.1
DOI: 10.1038/s41592-024-02325-3
摘要
基于测序的空间转录组学(sST)的最新发展通过促进转录组规模的空间基因表达测量促进了重要进展。尽管取得了这些进展,但目前仍缺乏对不同平台进行全面的基准测试。技术和数据集之间现有的差异给制定标准化评估指标带来了挑战。在这项研究中,作者建立了一组具有明确组织学结构特征的参考组织和区域,并使用它们生成数据来比较 11 种 sST 方法。作者强调分子扩散作为不同方法和组织中的可变参数,显着影响有效分辨率。此外,作者观察到空间转录组数据表现出独特的属性,而不仅仅是向单细胞数据添加空间轴,包括增强捕获图案化稀有细胞状态以及特定 markers 的能力,尽管受到包括测序深度和分辨率在内的多种因素的影响。作者的研究协助生物学家选择 sST 平台,有助于就评估标准达成共识,并为未来的基准测试工作建立一个框架,该框架可以用作空间转录组分析计算工具的开发和基准测试的金标准。
前言
高通量测序技术的出现彻底改变了转录组学,为基因表达的复杂性提供了无与伦比的见解。单细胞 RNA 测序 (scRNA-seq) 在剖析细胞异质性方面发挥了重要作用,但在捕获理解组织结构、细胞相互作用和功能状态所必需的空间背景方面存在不足。为了解决这一限制,sST 已成为一种关键方法,可以实现全面的转录组分析,同时保留组织内的空间信息。
尽管 sST 技术取得了快速进步,但该领域仍处于早期阶段。基于成像的空间转录组学有着悠久的历史,并且已经与 SpaceTX 联盟启动了协作基准测试工作。然而,尚未对 sST 进行系统的基准研究。先前的研究已经建立了比较单细胞转录组和表观基因组方法的框架,强调了标准化评估标准和参考组织用于技术验证的必要性,因为模拟的单细胞和空间数据可能不可靠。虽然 sST 技术具有共同的特征,例如在 scRNA-seq 中使用类似于细胞条形码的空间 DNA 条形码,但这些方法在空间分辨率和空间条形码寡核苷酸阵列的制备等方面存在显着差异。这种可变性给方法选择带来了挑战,并使通用评估标准的建立变得复杂。
在本研究中,作者通过对 11 种 sST 方法进行系统比较来解决这一关键差距。使用一组参考组织,包括小鼠胚胎眼、小鼠大脑海马区和小鼠嗅球,作者生成了用于 sST 基准测试的跨平台数据,称为 cadasSTre。该数据集使作者能够评估每种技术在空间分辨率、捕获效率和分子扩散方面的性能。作者更新了 scPipe,以实现 sST 数据的预处理和下采样,以进一步最大限度地减少变异性并促进未来技术的结合。作者的分析表明,不同 sST 技术生成的数据在下游应用中表现出不同的能力,例如聚类、区域注释和细胞间通信。值得注意的是,作者还强调了 sST 数据中的基因检测偏差。
本研究有多种目的:(1) 指导研究人员针对其特定的生物学问题选择适当的 sST 方法,(2) 为未来的基准测试工作建立一个框架,(3) 有助于在这个快速发展的领域中评估标准的标准化。此外,作者的工作旨在为评估用于空间转录组数据分析的计算工具提供基础。
研究结果
1. 对参考组织和实验设计进行基准测试
作者基于不同的空间索引策略系统地对空间转录组学 (sST) 方法进行了基准测试,包括 microarray (probe-based and polyA-based 10X Genomics Visium, DynaSpatial)、 bead-based approaches (HDST, BMKMANU S1000, Slide-seq V2, Curio Seeker (which is the commercialized version of Slide-seq at Curio Bioscience), Slide-tag)、polony- or nanoball-based technologies (Stereo-seq, PIXEL-seq, Salus)、microfluidics (DBiT-seq)。每种 sST 方法的详细信息列于 Tables 1 and 2 以及 Supplementary Table 1 中。