1、题目
有三张彩票,一张有奖。你买了一张,老板在自己剩余的两张中刮开了一张,没中。这时候他要用剩下的一张和你换,你换不换?
2、直观解释
根据概率的角度来看,你应该换。初始时,你购买的那张彩票中奖的概率是1/3,而老板剩下的两张中奖的概率是2/3。当老板刮开了一张没有中奖的彩票后,剩下的一张中奖的概率仍然是2/3。因此,如果你选择换掉自己的彩票,中奖的概率将提高到2/3,相比之下,不换的话中奖的概率只有1/3。所以从概率的角度来看,你应该选择换掉自己的彩票。
3、朴素贝叶斯计算
朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理的分类算法,它假设特征之间相互独立,因此被称为“朴素”。朴素贝叶斯算法的公式如下:
P(A | B) = [ P(B | A) * P(A) ] / P(B)
其中:P(A | B) 表示在B发生的情况下A发生的概率
我们规定:
A:我中奖
B:老板刮一张未中奖
作如下思考:
P(A | B) 表示:老板刮一张未中的情况下,我中奖的概率。
P(B | A) 表示:我中奖的情况下,老板刮一张未中的概率,由题意可知,P(B | A) = 1
P(A) 表示:我单独刮一张,中奖的概率,由题意可知,P(A) = 1/3
P(B) 表示:老板刮一张未中奖的概率,这个现在已经发生了,所以P(B) = 1
P(A | B) = [ P(B | A) * P(A) ] / P(B) = (1 * 1/3 ) / 1 = 1/3
即使老板刮一张未中奖的情况下,你手上这张的中奖概率还是1/3
到这里,你应该明白为什么你手上彩票的中奖概率还是 1/3 了,老板手上的那张中奖概率是2/3