这篇文章是基于上一篇的博客的 所以需要先看懂上一篇博客的数学公式推导:数学建模-用scipy.optimize的模块的curve_fit函数实现曲线的非线性最小二乘法拟合
线性最小二乘法
为 了 使 最 小 二 乘 法 估 计 这 个 模 型 的 参 数 r 和 χ m , 把 L o g i s t i c 方 程 表 示 为 : 为了使最小二乘法估计这个模型的参数r和\chi_m,把Logistic方程表示为: 为了使最小二乘法估计这个模型的参数r和χm,把Logistic方程表示为:
1 x ⋅ d x d t = r − s x , s = r x m . \frac{1}{x}\cdot\frac{d_x}{d_t}=r-sx,s=\frac{r}{x_m}. x1⋅
非线性拟合与最小二乘法

本文介绍如何使用线性最小二乘法来估计Logistic模型的参数,并通过具体的实例展示了如何利用numpy的linalg方法进行参数拟合的过程。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



