数学建模-用线性模型思想求解logistic人口回归模型

非线性拟合与最小二乘法
本文介绍如何使用线性最小二乘法来估计Logistic模型的参数,并通过具体的实例展示了如何利用numpy的linalg方法进行参数拟合的过程。

这篇文章是基于上一篇的博客的 所以需要先看懂上一篇博客的数学公式推导:数学建模-用scipy.optimize的模块的curve_fit函数实现曲线的非线性最小二乘法拟合

线性最小二乘法

为 了 使 最 小 二 乘 法 估 计 这 个 模 型 的 参 数 r 和 χ m , 把 L o g i s t i c 方 程 表 示 为 : 为了使最小二乘法估计这个模型的参数r和\chi_m,把Logistic方程表示为: 使rχm,Logistic:

1 x ⋅ d x d t = r − s x , s = r x m . \frac{1}{x}\cdot\frac{d_x}{d_t}=r-sx,s=\frac{r}{x_m}. x1

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值