jieba分词和RecursiveCharacterTextSplitter分词

jieba 分词

jieba(中文名:结巴)是一个广泛使用的中文分词库,它支持三种分词模式:

  • 精确模式:试图将句子最精确地切开,适合文本分析。
  • 全模式:把句子中所有可以成词的词语都扫描出来,速度非常快,但是不能保证每个词语的准确性。
  • 搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎的分词。

本身特点

  • 支持繁体分词和简体分词。
  • 支持自定义词典,可以提高分词的准确性。
  • 支持词性标注。
  • 可以进行关键词提取和词频统计。

使用方法

import jieba

text = "我爱北京天安门"
seg_list = jieba.cut(text)
print("Default Mode: " + "/ ".join(seg_list))  # 默认精确模式
print("Full Mode: " + "/ ".join(jieba.cut(text, cut_all=True)))  # 全模式
print("Search Mode: " + "/ ".join(jieba.cut_for_search(text)))  # 搜索引擎模式

输出结果

在这里插入图片描述

RecursiveCharacterTextSplitter 分词

RecursiveCharacterTextSplitterLangchain 中的一个文本分割工具,它基于字符递归地分割文本。这种分词方法不是基于词的边界,而是基于文本的字符长度进行分割。

本身特点

  • 可以指定每个文本块的最大字符数。
  • 可以指定文本块之间的重叠字符数,以保持上下文的连贯性。
  • 通常用于生成适合深度学习模型输入的文本块。

使用方法

from langchain.text_splitters import RecursiveCharacterTextSplitter
# 省略其他【这个示例要是运行的话前期准备工作很复杂,包很难下载,这里只是展示它们的不同以及各自的输出结果】
# 获取对应语言风格的数据
metadata = [item for item in data if item.get("press") == type_all[get_type]]
contents = [item['content'] for item in metadata]
updated_metadata = [{key: dic[key] for key in dic if key != 'content'} for dic in metadata]
# 创建 Document 对象
document = [Document(page_content=content, metadata=meta) for content, meta in zip(contents, updated_metadata)]
# print(document)
# 切分文档
text_split = RecursiveCharacterTextSplitter(chunk_size=12, chunk_overlap = 4)
split_data = text_split.split_documents(document)# 切分数据

print(split_data)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只天蝎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值