
数学知识补充
文章平均质量分 91
<Running Snail>
奇点将至
展开
-
张量(tensor)
今天很多现有的深度学习系统都是基于张量代数(tensor algebra)而设计的,但是张量代数不仅仅只能用于深度学习。什么是张量张量有很多种定义的方式,这里只讨论人工智能领域里的概念。在人工智能领域,定义比较简单,TensorFlow是这么定义的:简单翻译过来就是:张量是多维数组,目的是把向量、矩阵推向更高的维度。标量、向量、矩阵、张量的关系这4个概念是维度不断上升的,我们用点线面体的概念来比喻解释会更加容易理解:点——标量(scalar)线——向量(vector)面——矩阵(matri原创 2021-07-16 20:22:46 · 973 阅读 · 3 评论 -
二维高斯分布(Two-dimensional Gaussian distribution)
1、多维高斯分布的概率密度函数多维变量X=(x1,x2,...xn)X=(x_1,x_2,...x_n)X=(x1,x2,...xn)的联合概率密度函数为: 其中: d:变量维度。对于二维高斯分布,有d=2; u=(u1u2…un)u=(u_1 u_2 … u_n)u=(u1u2…un):各位变量的均值; Σ:协方差矩阵,描述各维变量之间的相关度。对于二维高斯分布,有:后文主要分析均值和协方差矩阵对二维高斯分布的影响。2、均值和协方差矩阵对二维高斯分布的影响转载 2020-07-22 10:47:39 · 33717 阅读 · 4 评论 -
朴素贝叶斯(Naive Bayesian)
贝叶斯分类的基本概念贝叶斯分类法是统计学分类方法,它可以预测类隶属关系的概率,如一个给定元组属于一个特定类的概率。贝叶斯分类基于贝叶斯定理。朴素贝叶斯分类法假定一个属性值在给定类上的概率独立于其他属性的值,这一假定称为类条件独立性。贝叶斯定理贝叶斯定理特别好用,但并不复杂,它解决了生活中经常碰到的问题:已知某条件下的概率,如何得到两条件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)的概率。P(A|B)是后验概率(posterior probability),也就是我们常说的条件概率原创 2020-07-14 11:55:43 · 516 阅读 · 0 评论