
推荐系统
文章平均质量分 93
收录推荐系统的基础知识、前沿模型
<Running Snail>
奇点将至
展开
-
【论文笔记】KDD2019 | KGAT: Knowledge Graph Attention Network for Recommendation
为了更好的推荐,不仅要对user-item交互进行建模,还要将关系信息考虑进来.传统方法因子分解机将每个交互都当作一个独立的实例,但是忽略了item之间的关系原创 2023-07-19 18:16:02 · 37186 阅读 · 0 评论 -
【综述】推荐系统偏差问题 & 去偏最新研究进展(Bias and Debias in Recommender System)
近年推荐系统领域的研究主要集中于如何设计更好的模型来适应用户行为数据,进而提升推荐质量。然而,由于用户行为数据是观察所得(Observational)而不是实验所得(Experimental),因此会存在各种偏差。近年的会议中,越来越多的研究关注Recsys Bias的问题,Recommendation debiasing成为了热点研究方向。原创 2022-10-19 23:08:35 · 5522 阅读 · 0 评论 -
【论文笔记】CIKM‘22 & Amazon | (Navip) 推荐系统中图神经网络的去偏邻域聚合
本文是亚马逊在CIKM2022的一篇工作。图形神经网络(GNN)对于曝光偏差的脆弱性导致模型偏差,产生次优推荐效果。只在损失函数中应用IPS,但对GNN的邻域聚合关注较少,GNN 在相邻聚合过程中也可能产生偏差。首先导出图中每个用户-项目交互的倾向得分。然后利用拉普拉斯归一化的倾向得分反演方法去除暴露偏差对邻域聚集的影响(对不流行的邻居赋予更大的权重,以平衡有偏局部结构)。通过在两个公共数据集和 Amazon Alexa 数据集上进行的实验,验证了该方法的有效性,其性能提高了14.2%原创 2022-10-12 11:21:26 · 1142 阅读 · 1 评论 -
【论文笔记】ICML2016 & Cornell | (IPS-MF) Recommendations as treatments: Debiasing learning and evaluation
本文是较为经典的一篇提出利用逆倾向分数(Inverse Propensity Score, IPS)处理选择偏差的文章。倾向分数可以看作是每个数据被观察到的概率。从因果推断的角度看待推荐问题,认为在推荐系统中给用户曝光某个商品类似于在医学中给病人施加某种治疗方式。本文提出的方法可以在数据有偏的情况下实现无偏的性能估计,并提供了一个矩阵分解方法。原创 2022-10-11 17:15:06 · 1642 阅读 · 5 评论 -
【论文笔记】Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions
文章链接:推荐系统的发展历程浅层模型早期的推荐模型主要通过计算交互的相似度来捕获协同信号,之后随着Netflix比赛中矩阵分解模型的大放异彩,推荐系统被转化为表示学习问题。神经网络模型浅层的模型不足以建模复杂的用户行为和大量数据输入,以神经协同过滤NCF,深度因子分解机DeepFM为代表的神经网络方法被开发了出来。图神经网络模型传统的神经网络很难学习到数据中的高阶结构信息,而图神经网络GNN采用消息传递机制整合邻居信息,通过多层堆叠使得节点可以访问高阶邻居的信息。因此图神经网络模型近年来被广泛原创 2022-04-28 23:51:38 · 587 阅读 · 0 评论 -
【论文笔记】(DGCN-HN) Deep Graph Convolutional Networks with Hybrid Normalization for Accurate and …
文章目录1. Intro1.1 层数不够1.2 使用固定的归一化规则2. METHOD2.1 Deep Graph Convolutional Network for Recommendation2.2 Hybrid Normalization for Flexible Modeling of Neighbor Importance2.3 Simplified Attention Network for Adaptive Combination3. EXPERIMENTS本文发表在KDD 2021上在.原创 2022-03-25 19:58:59 · 4489 阅读 · 3 评论 -
RecSys Challenge 历年推荐赛题汇总
RecSys是ACM主办的推荐系统旗舰会议,其征文范畴包含推荐系统的各个领域,包括算法设计、系统实现、理论推导和评估测试等每年RecSys都会举办推荐系统相关的比赛,本文将对历史RecSys比赛进行汇总。RecSys 2010 Challengehttp://2010.recsyschallenge.com/比赛名称:Challenge on Context-aware Movie Recommendation比赛任务:The Challenge on Context-aware Movie Re原创 2022-02-23 17:35:23 · 923 阅读 · 0 评论 -
【论文笔记】Neural Graph Collaborative Filtering
文章目录1. Motivation2. 模型2.1 Embedding Layer 嵌入层2.2 Embedding Propagation Layers2.2.1 First-order Propagation2.2.2 High-order Propagation2.2.3 矩阵形式的传播2.3 模型预测1. Motivation在过去的基于矩阵分解或者深度学习的方法,通常是利用user和item的embedding进行协同召回,存在的缺点:没有考虑user和item之间的collaborativ原创 2021-11-03 15:47:41 · 474 阅读 · 0 评论 -
传统推荐模型——协同过滤
文章目录UserCF:基于用户的协同过滤什么是CF用户相似度计算最终结果的排序ItemCF:基于物品的协同过滤UserCF和ItemCF的适用场景CF存在的几个缺点代码实践数据集Python代码协同过滤,Collaborative Filtering,CF,可以说是业界影响力最大、应用最广泛的模型,作为曾经推荐系统的首选模型,协同过滤基于系统中其他用户的评分或行为进行预测和推荐,分为基于用户的协同过滤和基于物品的协同过滤两种算法。UserCF:基于用户的协同过滤什么是CF顾名思义,“协同过滤”就是原创 2021-07-23 16:32:43 · 2847 阅读 · 5 评论