
Pytorch
<Running Snail>
奇点将至
展开
-
pytorch Tensor及其基本操作
本章只是对pytorch的常规操作进行一个总结,大家看过有脑子里有印象就好,知道有这么个东西,需要的时候可以再去详细的看,另外也还是需要在实战中多运用。Tensor attributes:在tensor attributes中有三个类,分别为torch.dtype, torch.device, 和 torch.layout其中, torch.dtype 是展示 torch.Tensor 数据类型的类,pytorch 有八个不同的数据类型,下表是完整的 dtype 列表.Torch.device 是转载 2022-04-23 16:38:58 · 870 阅读 · 0 评论 -
apex 的安装
为了帮助提高Pytorch的训练效率,NVIDIA开源了一款混合精度训练工具Apex。号称能够在不降低性能的情况下,将模型训练的速度提升2-4倍,训练显存消耗减少为之前的一半。官方安装方法(没能成功)git clone https://github.com/NVIDIA/apexcd apexpip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./2.用下面的方法成功安装了原创 2022-01-08 11:33:42 · 814 阅读 · 0 评论 -
Python生成requirements.txt方法
requirements.txt可以通过pip命令自动生成和安装,这种情况更适用于此项目是单独的虚拟python环境生成requirements.txt文件pip freeze > requirements.txtpip3 freeze > requirements.txt安装requirements.txt依赖pip install -r requirements.txtpip3 install -r requirements.txt...原创 2021-10-31 17:18:17 · 194 阅读 · 0 评论 -
Pytorch设置随机数种子
def setup_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True原创 2021-09-30 19:49:02 · 830 阅读 · 0 评论 -
torch.nn.Embedding()的固定化
问题最近在运行模型时,结果不稳定,所以尝试修改随机初始化的参数,使参数是随机初始化的,但是每次都一样发现是用了self.embed_user = nn.Embedding(user_num, factor_num) self.embed_item = nn.Embedding(item_num, factor_num)是调用了torch.nn.Embedding()进行了初始化, 创建了一个嵌入的模型尝试一发现对于embed_user的调用都是weightusers_embedd原创 2021-05-26 17:32:32 · 1611 阅读 · 4 评论