
论文
文章平均质量分 86
论文笔记
<Running Snail>
奇点将至
展开
-
【论文笔记】Unifying Large Language Models and Knowledge Graphs:A Roadmap
大模型与知识图谱的互相增强、协同融合和未来发展路线原创 2023-10-30 23:46:53 · 1332 阅读 · 0 评论 -
【论文笔记】KDD2019 | KGAT: Knowledge Graph Attention Network for Recommendation
为了更好的推荐,不仅要对user-item交互进行建模,还要将关系信息考虑进来.传统方法因子分解机将每个交互都当作一个独立的实例,但是忽略了item之间的关系原创 2023-07-19 18:16:02 · 37187 阅读 · 0 评论 -
【综述】推荐系统偏差问题 & 去偏最新研究进展(Bias and Debias in Recommender System)
近年推荐系统领域的研究主要集中于如何设计更好的模型来适应用户行为数据,进而提升推荐质量。然而,由于用户行为数据是观察所得(Observational)而不是实验所得(Experimental),因此会存在各种偏差。近年的会议中,越来越多的研究关注Recsys Bias的问题,Recommendation debiasing成为了热点研究方向。原创 2022-10-19 23:08:35 · 5534 阅读 · 0 评论 -
【论文笔记】CIKM‘22 & Amazon | (Navip) 推荐系统中图神经网络的去偏邻域聚合
本文是亚马逊在CIKM2022的一篇工作。图形神经网络(GNN)对于曝光偏差的脆弱性导致模型偏差,产生次优推荐效果。只在损失函数中应用IPS,但对GNN的邻域聚合关注较少,GNN 在相邻聚合过程中也可能产生偏差。首先导出图中每个用户-项目交互的倾向得分。然后利用拉普拉斯归一化的倾向得分反演方法去除暴露偏差对邻域聚集的影响(对不流行的邻居赋予更大的权重,以平衡有偏局部结构)。通过在两个公共数据集和 Amazon Alexa 数据集上进行的实验,验证了该方法的有效性,其性能提高了14.2%原创 2022-10-12 11:21:26 · 1145 阅读 · 1 评论 -
【论文笔记】ICML2016 & Cornell | (IPS-MF) Recommendations as treatments: Debiasing learning and evaluation
本文是较为经典的一篇提出利用逆倾向分数(Inverse Propensity Score, IPS)处理选择偏差的文章。倾向分数可以看作是每个数据被观察到的概率。从因果推断的角度看待推荐问题,认为在推荐系统中给用户曝光某个商品类似于在医学中给病人施加某种治疗方式。本文提出的方法可以在数据有偏的情况下实现无偏的性能估计,并提供了一个矩阵分解方法。原创 2022-10-11 17:15:06 · 1657 阅读 · 5 评论 -
【论文笔记】Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions
文章链接:推荐系统的发展历程浅层模型早期的推荐模型主要通过计算交互的相似度来捕获协同信号,之后随着Netflix比赛中矩阵分解模型的大放异彩,推荐系统被转化为表示学习问题。神经网络模型浅层的模型不足以建模复杂的用户行为和大量数据输入,以神经协同过滤NCF,深度因子分解机DeepFM为代表的神经网络方法被开发了出来。图神经网络模型传统的神经网络很难学习到数据中的高阶结构信息,而图神经网络GNN采用消息传递机制整合邻居信息,通过多层堆叠使得节点可以访问高阶邻居的信息。因此图神经网络模型近年来被广泛原创 2022-04-28 23:51:38 · 587 阅读 · 0 评论 -
【论文笔记】Beyond Low-frequency Information in Graph Convolutional Networks
文章目录1. Abstract2. Introduction低频和高频信号作用FAGCN怎么设计3. An Experimental Investigation4. Model4.1 filter定义4.2 Aggregation4.3 Problems of signal combination4.4 Spatial vision of FAGCN4.5 系数αijG\alpha_{i j}^{G}αijG4.6 模型整体框架FAGCN的表达能力实验本文发表在AAAI-21上论文地址:https:原创 2022-03-29 18:09:11 · 5337 阅读 · 4 评论 -
【论文笔记】(DGCN-HN) Deep Graph Convolutional Networks with Hybrid Normalization for Accurate and …
文章目录1. Intro1.1 层数不够1.2 使用固定的归一化规则2. METHOD2.1 Deep Graph Convolutional Network for Recommendation2.2 Hybrid Normalization for Flexible Modeling of Neighbor Importance2.3 Simplified Attention Network for Adaptive Combination3. EXPERIMENTS本文发表在KDD 2021上在.原创 2022-03-25 19:58:59 · 4496 阅读 · 3 评论 -
【论文笔记】Neural Graph Collaborative Filtering
文章目录1. Motivation2. 模型2.1 Embedding Layer 嵌入层2.2 Embedding Propagation Layers2.2.1 First-order Propagation2.2.2 High-order Propagation2.2.3 矩阵形式的传播2.3 模型预测1. Motivation在过去的基于矩阵分解或者深度学习的方法,通常是利用user和item的embedding进行协同召回,存在的缺点:没有考虑user和item之间的collaborativ原创 2021-11-03 15:47:41 · 476 阅读 · 0 评论 -
【论文笔记】Simple and Deep Graph Convolutional Networks
该论文由中国人民大学、复旦大学、阿里巴巴合作完成,第一作者为中国人民大学研究生陈明,通讯作者为中国人民大学教授魏哲巍。1. 摘要Graph Convolutional Network via Initial residual and Identity mapping(GCNII),它是普通GCN模型的扩展,应用了两种简单而有效的技术:初始残差(Initial residual)和恒等映射(Identity mapping)2. 简介主要说了以下几点:GNN传统GCN的局限:浅层现.原创 2021-10-30 21:55:20 · 481 阅读 · 0 评论 -
计算机学术英语常见词汇短语总结
vanilla在很多论文和视频中,我经常遇到vanilla这个单词,例如vanilla convolution等。词典里的解释都是香草味的、香草精……在这些语境中,个人理解的vanilla是原始的 / 纯粹的 / 纯的 / 原来的 / 最初的 / 原始版本 / 普通的意思!比如原味奶茶就可以使用vanilla tea,直观理解就是:不添加任何的最纯粹的最原始的物体、概念或者结构,没有经过任何的修饰或者升级,或者是最初的版本即可称之为vanilla!1、SOTA:state of the art. 最原创 2021-10-30 16:52:55 · 559 阅读 · 0 评论 -
【论文笔记】Factorizable Graph Convolutional Networks
文章目录1. Abstract2. Method2.1 Disentangling Step2.2 Aggregation Step2.3 Merging Step3. 总体架构4. 超参数的设置Factorizable Graph Convolutional Networks,FactorGCN,可分解图卷积网络1. Abstract在许多真实的图中,节点之间的多个异质关系被混合并折叠成一条边。在社交网络的情况下,两个人可能是朋友、同事和同时生活在同一个城市,但通过单一的边连接,忽略了这种相互联系原创 2021-10-24 17:03:31 · 707 阅读 · 0 评论 -
残差网络ResNet
文章目录ResNet模型两个注意点关于x关于残差单元核心实验原因分析ResNet的效果题外话ResNet是由何凯明在论文Deep Residual Learning for Image Recognition里提出的论文链接:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780459ResNet模型如上图,网络深度增加时,56层的网络比20层网络效果还要差。这不会是过拟合问题,因为56层网络的训练误差同样高(具体分析见原创 2021-07-20 20:48:36 · 507 阅读 · 1 评论 -
【论文笔记】K-plet Recurrent Neural Networks for Sequential Recommendation
原文:K-plet Recurrent Neural Networks for Sequential Recommendation(本文只是略读,所以笔记只记录了主要的思想,更多的细节还需看原文)背景一般推荐忽略时间因素,将用户的历史行为表示为一个集合,利用矩阵分解技术获取用户兴趣。序列推荐主要考虑用户的评分和购买行为马尔科夫链:序列转化为转移图,融合矩阵分解,难以对长期依赖性建模基于循环神经网络的方法: 只对整体结构建模因为循环神经网络(RNN)在序列数据 ..原创 2021-04-30 14:05:06 · 515 阅读 · 0 评论 -
图神经网络(GNN)模型原理及应用综述
从数据结构到算法:图网络方法初探论文《Graph Neural Networks: A Review of Methods and Applications》木牛马论文阅读笔记https://www.cnblogs.com/ydcode/p/11050417.htmlhttps://zhuanlan.zhihu.com/p/102994627?utm_source=wechat_session文章目录图神经网络(Graph Neural Networks,GNN)1. GNN起源1.1 动..原创 2021-04-16 10:59:14 · 126532 阅读 · 3 评论 -
【论文笔记】Revisiting Graph based Collaborative Filtering: A Linear Residual Graph Convolutional Network
LR-GCCF1. Abstract2. Introduction3. LR-GCCF3.1 模型总体结构(Overall Structure of the Proposed Model)3.2 线性嵌入传播(Linear Embedding Propagation)3.3 残差偏好预测(Residual Preference Prediction)3.4 模型学习(Model Learning)4.模型对比1. Abstract基于GCN推荐模型的问题:基于GCN的推荐模型带有非线性激活函.原创 2021-03-15 17:29:45 · 988 阅读 · 0 评论 -
Python argparse模块详解
文章目录前言简单介绍argparseargparse使用基本步骤add_argument() 方法示例 前言在很多论文的源码中,会有以下这种代码:parser = argparse.ArgumentParser(description="Run NGCF.")parser.add_argument('--weights_path', nargs='?', default='',help='Store model path.')parser.add_argument('--data_pat原创 2020-08-29 18:59:44 · 1175 阅读 · 0 评论 -
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation 论文笔记
1.简介1.1 摘要GCN中两种最常见的设计——特征转换和非线性激活,对协同过滤的性能贡献很小。我们提出了一个新的模型LightGCN,它只包含GCN中最重要的组件——邻域聚合——用于协同过滤。具体来说,LightGCN通过在用户-项目交互图上线性传播来学习用户和项目嵌入,并使用在所有层上学习到的嵌入的加权和作为最终的嵌入。2.准备工作...原创 2020-08-19 15:51:02 · 1118 阅读 · 0 评论