1、问题
2、仿真过程
3、代码实现
1、旅行商问题(TSP问题)。
假设有一个旅行商人要拜访全国31个省会城市,它需要选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。对路径选择的要求是:所选路径的路成为所有路径之中的最小值。
全国31个省会城市的坐标为
[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;3238 1229;4196 1044;
4312 790;4386 570;3007 1970;2562 1756;2788 1491;2381 1676;1332 695;3715 1678;
3918 2179;4061 2370;3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;
3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;2370 2975]
2、仿真过程
(1)初始化种群数目NP=200,染色体基因维数为N=31,最大进化代数G=1000.
(2)产生初始种群,计算个体适应度值,即路径长度:采用基于概率的方式选择进行操作的个体;对选中的成对个体,随机交叉所选中的成对城市坐标,以确保交叉后路径每个城市只到访一次;对选中的单个个体,随机交换其一对城市坐标作为变异操作,产生新的种群,进行下一次遗传操作。
(3)判断是否满足终止条件:若满足,则结束搜索过程,输出优化值,若不满足,则继续进迭代优化。
3、代码实现
%% 遗传算法解决TSP问题
clear all;
close all;
clc;
%% 初始化参数
C=[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;...
3238 1229;4196 1044;4312 790;4386 570;3007 1970;2562 1756;...
2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;...
3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;...
3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;...
2370 2975]; %31个省会城市坐标
N=size(C,1); %TSP问题的规模,即城市数目
D=zeros(N); %任意两个城市距离间隔矩阵
%% 求任意两个城市距离间隔矩阵
for i=1:N
for j=1:N
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
end
end
NP=200; %免疫个体数目
G=1000; %最大免疫代数
f=zeros(NP,N); %用于存储种群
F = []; %种群更新中间存储
for i=1:NP
f(i,:)=randperm(N); %随机生成初始种群
end
R = f(1,:); %存储最优种群
len=zeros(NP,1); %存储路径长度
fitness = zeros(NP,1); %存储归一化适应度值
gen = 0;
%% 遗传算法循环
while gen<G
%% 计算路径长度
for i=1:NP
len(i,1)=D(f(i,N),f(i,1));
for j=1:(N-1)
len(i,1)=len(i,1)+D(f(i,j),f(i,j+1));
end
end
maxlen = max(len);
minlen = min(len);
%% 更新最短路径
rr = find(len==minlen);
R = f(rr(1,1),:);
%% 计算归一化适应度
for i =1:length(len)
fitness(i,1) = (1-((len(i,1)-minlen)/(maxlen-minlen+0.001)));
end
%% 选择操作
nn = 0;
for i=1:NP
if fitness(i,1)>=rand
nn = nn+1;
F(nn,:)=f(i,:);
end
end
[aa,bb] = size(F);
while aa<NP
nnper = randperm(nn);
A = F(nnper(1),:);
B = F(nnper(2),:);
%% 交叉操作
W = ceil(N/10); % 交叉点个数
p = unidrnd(N-W+1); % 随机选择交叉范围,从p到p+W
for i =1:W
x = find(A==B(p+i-1));
y = find(B==A(p+i-1));
temp = A(p+i-1);
A(p+i-1) =B(p+i-1);
B(p+i-1) = temp;
temp = A(x);
A(x) = B(y);
B(y) = temp;
end
%% 变异操作
p1 = floor(1+N*rand());
p2 = floor(1+N*rand());
while p1==p2
p1 = floor(1+N*rand());
p2 = floor(1+N*rand());
end
tmp = A(p1);
A(p1) = A(p2);
A(p2) = tmp;
tmp = B(p1);
B(p1) = B(p2);
B(p2) = tmp;
F = [F;A;B];
[aa,bb] = size(F);
end
if aa>NP
F = F(1:NP,:); % 保持种群规模为NP
end
f = F; % 更新种群
f(1,:) = R; % 保留每代最优个体
clear F;
gen = gen+1;
Rlength(gen) = minlen;
end
%% 绘制图形
figure
for i = 1:N-1
plot([C(R(i),1),C(R(i+1),1)],[C(R(i),2),C(R(i+1),2)],'bo-');
hold on;
end
plot([C(R(N),1),C(R(1),1)],[C(R(N),2),C(R(1),2)],'ro-');
title(['优化最短距离:',num2str(minlen)]);
figure
plot(Rlength)
xlabel('迭代次数')
ylabel('目标函数值')
title('适应度进化曲线')
由于初始位置不确定,每次结果也不一样
第一次
第二次