图神经网络
以理论为基础,来学习GNN的各种算法。
Ma Sizhou
低级的欲望,放纵即可获得;高级的欲望,克制才能达到。
展开
-
图卷积神经网络笔记——第六章:(2)基于PyTorch的交通流量预测
上一小节介绍了交通流量数据的处理,主要是把拿到的数据的结构信息(邻接矩阵)和节点信息(流量数据)处理成了模型所需要的train_data和test_data,上一小节: 链接.这一小节基于上节的交通流量数据来构造图卷积模型,预测未来时刻的交通流量情况.分别使用GCN,Chebnet和GAT三种模型来构造....原创 2020-08-15 15:52:54 · 18875 阅读 · 137 评论 -
图卷积神经网络笔记——第五章:(1)基于PyG库的图卷积的节点分类实战
前面讲解了图卷积的基本理论知识( 链接.),接下来讲解基于PyG库的图卷积的节点分类。目录一、PyG库简介1、安装PyG一、PyG库简介PyG的全称是 PyTorch Geometric,是一款基于 PyTorch 的几何深度学习框架,可以简单方便的实现图神经网络,也就是说,PyG里面封装了各种方法,比如常见的各种图卷积,直接调用即可。当然在学习PyG之前,要对PyTorch有一定的了解。PyG官方文档: https://pytorch-geometric.readthedocs.io/en/l.原创 2020-07-16 19:29:40 · 6188 阅读 · 11 评论 -
图卷积神经网络笔记——第四章:图卷积神经网络的应用
上一节: 链接.通过前面的讲解,我们大致了解了什么是图卷积神经网络,有了一个较熟悉的认识,接下来介绍一下图卷积神经网络的应用。应用较多,主要详细讲解交通预测。目录一、简介二、图卷积在交通预测上的应用(详讲)1.交通预测任务介绍2.各种方法介绍2.1 忽略空间信息2.2 构建 spatio-temporal matrix2.3 栅格模型2.4 图模型一、简介二、图卷积在交通预测上的应用(详讲)1.交通预测任务介绍说明一下公式:Vt∈Rn∗cV_t \in R^{n*c}Vt∈Rn∗.原创 2020-06-22 10:40:07 · 3833 阅读 · 1 评论 -
图卷积神经网络笔记——第三章:空域图卷积介绍之过平滑现象及解决方法(2)
上一小节: 链接.上一小节介绍了空域卷积中比较典型的4种模型,接下来介绍空间域图卷积局限性分析——过平滑现象目录一、图卷积神经网络回顾二、空间域图卷积局限性分析三、过平滑问题的若干缓解方案四、总结一、图卷积神经网络回顾由于上面缺点的存在,使得谱域图卷积不能实际使用,而造成这种缺点的原因是正交基UUU,那么能不能找到另外的基来代替呢?下面来看:为什么使用切比雪夫k阶多项式模拟卷积操作,这个k就代表k阶近邻呢?原因是因为K阶切比雪夫多项式需要对图拉普拉斯矩阵进行K次乘法计算,而图拉普拉斯矩阵.原创 2020-06-21 09:18:02 · 4372 阅读 · 0 评论 -
图卷积神经网络笔记——第三章:空域图卷积介绍(1)
目录一、简介1、回顾谱域图卷积2、谱域图卷积的缺陷二、四个空域卷积模型1、GNN上一小节: 链接.空域图卷积主要是围绕什么是卷积展开,介绍四个空域卷积模型,分别是:GNN、GraphSAGE、GAT、PGC一、简介1、回顾谱域图卷积2、谱域图卷积的缺陷空域卷积没有涉及太多的数学知识,所以直接开始四种模型的介绍。二、四个空域卷积模型1、GNNGNN回答卷积就是:固定数量领域节点排序后,与相同数量的卷积核参数相乘求和。这有点绕口,实际上就是说,GNN认为卷积分为两步,原创 2020-06-09 09:09:37 · 11265 阅读 · 9 评论 -
图卷积神经网络笔记——第二章:谱域图卷积介绍(2)
上一小节: 链接.接下来介绍三个经典的图谱卷积模型:SCNN、ChebNet、GCN目录一、简介二、SCNN三、ChebNet四、GCN五、小结一、简介上面这个式子是上一小节最后推导的结果。二、SCNN上面图片实际上是GCN模型的图片,放在这里是因为不同方法的卷积网络特征图的规律都是一样的。如上面左图,首先某一层的图的信号可以表示为一个 n∗Cn*Cn∗C 的一个矩阵,nnn 就表示有nnn个不同的节点,CCC 代表通道个数;然后所谓图上的信号,其实就可以分解为各个节点上的信号,用XXX.原创 2020-05-31 09:24:26 · 5593 阅读 · 5 评论 -
图卷积神经网络笔记——第二章:谱域图卷积介绍(1)
目录一、图卷积介绍二、图谱卷积的背景知识一、图卷积介绍其中语音可以看作是一维向量,图像可以看作是二维矩阵,视频可以看作是三维矩阵。其中序列无序性是指:上图中红色节点的邻居节点有两个,而我们不知道它们谁应该排在前,谁应该排在后,这就是序列无序性。维数可变性是指:上图中红色节点和蓝色节点的邻居节点个数是可以不相同的,这就是维数可变性。因此我们无法将3x3的卷积核应用到图数据上,这就是图卷积网络需要解决的问题。后面我会先介绍谱域图卷积方法,主要由下面圈出来的三篇文章入手,即SCNN、GCN原创 2020-05-29 11:27:40 · 10416 阅读 · 11 评论 -
图卷积神经网络笔记——第一章:系统性地介绍,卷积为什么要从 欧式空间 转到 非欧式空间
目录一、人工神经网络发展浪潮二、卷积计算与神经网络结构1.卷积定理2.基本概念——卷积3.基本概念——池化、全连接4.多层神经网络5.现代卷积神经网络结构基础 —— LeNet一、人工神经网络发展浪潮ImageNet2012年竞赛上,采用了最新的卷积神经网络,误差一下子降低了10个点,从此卷积神经网络迎来浪潮,如VGGNet,InceptionNet,残差网络ResNet等。二、卷积计...原创 2020-05-06 19:18:38 · 6713 阅读 · 1 评论 -
图神经网络——(2)图卷积神经网络
初入图神经网络,记录其中的一些理论知识。 上一篇文章中简单的介绍了几种与图数据相关的名词以及它们之间的联系与区别,这篇文章中主要介绍图卷积神经网络(GCN)的实现原理。一、卷积VS图卷积 图卷积操作的思想实际上是直接受到卷积...原创 2020-04-11 11:07:29 · 3453 阅读 · 1 评论 -
图神经网络——(1)初入图神经网络
初入图神经网络,记录其中的一些理论知识。 在我们搜索以关键字“图神经网络”有关的论文时,我们会经常看到Graph Embedding(图嵌入网络GE),Graph Neural Network(图神经网络GNN) 和 Graph Convolutional Network(图卷积神经网络GCN) 几个术语,...原创 2020-03-16 20:27:37 · 910 阅读 · 0 评论