图卷积神经网络笔记——第二章:谱域图卷积介绍(2)

本文介绍了三种经典的图谱卷积模型:SCNN、ChebNet和GCN。SCNN利用可学习的对角矩阵实现卷积,ChebNet采用切比雪夫多项式减少计算复杂度,而GCN进一步简化为1阶切比雪夫多项式。每种模型都有其优缺点,如SCNN计算拉普拉斯矩阵特征值耗时,ChebNet降低了参数复杂度,GCN则极大地减少了参数量。
摘要由CSDN通过智能技术生成

上一小节: 链接.
接下来介绍三个经典的图谱卷积模型:SCNN、ChebNet、GCN

一、简介

上一小节介绍了谱域图卷积的背景知识和数学原理,确实比较苦涩,但是很有必要了解,那么接下来我们接着上一小节的内容,来介绍几种经典的图谱卷积模型:SCNN、ChebNet、GCN。

这三个模型均立足于图谱理论且一脉相承。
其中,ChebNet可看做 SCNN的改进 ,GCN 可看做 ChebNet 的改进 。当然这三个模型均可认为是下式的一特例 。这个式子还记得吗,就是上一小节最后推导出来的结果。

在这里插入图片描述

接下来就开始模型的介绍吧。

二、SCNN

2.1 卷积前后的信号:

在介绍SCNN模型之前,先看一下,卷积前后每个节点的信号是什么?如下图所示:

在这里插入图片描述

上面图片实际上是GCN模型的图片,放在这里是因为不同方法的卷积网络特征图的规律都是一样的。如上面左图,首先某一层的图的信号可以表示为一个 n ∗ C n*C nC 的一个矩阵, n n n 就表示有 n n n个不同的节点, C C C 代表通道个数;然后所谓图上的信号,其实就可以分解为各个节点上的信号,用 X X X表示整个图上的信号,是一个 n ∗ C n*C nC 的矩阵,具体比如 X 1 X_1 X1这个节点它就是一个 1 ∗ C 1*C 1C 的向量,有 n n n 个节点,就是一个 n ∗ C n*C nC 的矩阵。当我们假设通道 C C C 等于 1 时,整个图上的信号其实就类似于灰度图像上的信号。

这种表示其实和image上的表示是一样的,如上面右图,假设一张图片的高是 h h h ,宽是 w w w,通常我们使用 h ∗ w ∗ C h*w*C hwC 的矩阵来代表图像某一层的特征图, C C C 就是通道个数。如上面中间图,特征图的形式是 n ∗ F n*F nF F F F 表示该层的一个特征图的通道数。

上面其实就是在说图卷积网络不同层的特征图,他们是共享一个图的结构,就是传播到下一层,图的结构是不变的(节点个数不变,节点之间的关系不变),变的是图上的信号或者说是节点上的信号,如 X 1 X_1 X1 i n p u t input input l a y e r layer layer 层是一个 1 ∗ C 1*C 1C 的向量,而到了 o u t p u t output output l a y e r layer layer层变成一个 1 ∗ F 1*F 1

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值