研零小白固体物理学习(一):晶体的结合和弹性

1.1 晶体的结合类型

聚合能
形成能
单质
键能
化合物
结合力
微观结构
宏观性能
  • 孤立态的粒子形成价键,单质,聚合能
  • 单质和单质之间通过反应形成新的物质,化合物,形成能
    如NaCl
  • 电子结构:圆形的封闭壳层,静电库仑力
  • 几何结构:无方向性,正负离子相间做紧密堆积,配位数<=8
  • 键的强度:中强至强
  • 力学性质:强度高,硬度大,无延展性
  • 热学性质:熔点高,膨胀系数小,熔体内为离子
  • 电子性质:绝缘体,在熔体中离子导电
  • 光学性质:折射率较高,完整晶体多是透明

1.2 共价键

如金刚石,硅,锗,SiO2,H2,HF

  • 电子结构:共用电子对(电子云的重叠)
  • 几何结构:方向性,饱和性(一个原子只能形成一定数目的共价键,电子位于共价键附近的几率比其他地方高),配位数<=4
  • 键的强度:强
  • 力学性质:强度高,硬度高,无塑性(脆)
  • 热学性质:熔点高,膨胀系数小,熔体内为原子挥发性低
  • 电子性质:绝缘体/半导体,在熔体中电子导电化学惰性大
  • 光学性质:能透射红外线

1.3 金属键

  • 电子结构:静电作用力,原子核和电子气的静电吸引
  • 几何结构:无方向性,无饱和性,最密堆积,配位数12,8
  • 键的强度:中强
  • 力学性质:密度大,电阻随温度升高增大,强韧性好
  • 热学性质:导热性好,熔点较高,膨胀系数较大
  • 电子性质:导电性良好,电阻随温度升高增大
  • 光学性质:有金属光泽,对红外和可见光反射能力强,不能透射可见光,可以透射紫外光

1.4 分子键(范德华键)

  • 电子结构:原子(分子、原子团)之间偶极矩,弱静电力

偶极矩是衡量分子或化学键极性的物理量,它表示正、负电荷中心间的距离和电荷中心所带电量的乘积。静电力:极性分子之间永久偶极矩。诱导力:极性分子和非极性分子间。色散力:非极性分子间瞬时偶极矩。

  • 几何结构:结合力小、无方向性和饱和性、配位数12。
  • 键的强度:弱
  • 力学性质:硬度小,易压缩
  • 热学性质:熔点低、沸点低
  • 电子性质:固态和熔融态绝缘性良好
  • 光学性质:透射光谱从红外线到紫外线

1.5 氢键

  • 电子结构:裸露的氢质子(弱电)与其他负电性元素之间的分子间作用力

构成原子核的粒子之一,带正电,所带电量和电子相等

  • 几何结构:方向性、饱和性、配位数是2
  • 键的强度:弱
  • 力学性质:密度小、有使许多分子聚合的趋势
  • 热学性质:熔点和沸点介于离子晶体和分子晶体之间
  • 电子性质:介电系数大
  • 光学性质:可见光透明

1.6 混合键

材料中往往是不同键的混合。

  • 石墨:金属键(有大量自由电子)+共价键+范德华力
  • 过渡金属、半金属:金属键+共价键
  • 陶瓷化合物:共价+离子键
  • 气体分子、聚合物:共价键+范德华力

电负性:各元素的原子在形成价键时吸引电子的能力,表征原子形成负离子倾向的大小。同一周期内的原子自左至右电负性增大,同一族内自上至下电负性逐渐减弱
电负性差值越大,离子键的比例越高

2 结合力的一般性质

2.1 相互作用能和相互作用力

f ( r ) → \overrightarrow {f(r)} f(r) 只与质点位置有关,有心力, ∇ ∗ f ( r ) → = 0 \nabla*\overrightarrow {f(r)}=0 f(r) =0,合力矩0,角动量守恒,对 u ( r ) u(r) u(r) f ( r ) → = − ∇ ( r ) \overrightarrow {f(r)}=-\nabla(r) f(r) =(r),既 f ( r ) → = d u ( r ) d r \overrightarrow {f(r)} = \frac{du(r)}{dr} f(r) =drdu(r)

r是距离

在这里插入图片描述
相互作用能 u ( r ) u(r) u(r)为正,两个粒子形成的价键往往不稳定,为负值说明可以形成价键
如果 f ( r ) f(r) f(r)为正,两个质点是排斥力,为负说明两个质点是吸引力,等于零说明形成稳定价键

  • r < r 0 , f ( r ) > 0 r<r_0,f(r)>0 r<r0,f(r)>0,斥力。近距离主要是斥力:同种电荷之间的库仑力,泡利不相容引起的斥力
  • r = r 0 r = r_0 r=r0,两粒子的平衡位置, f ( r ) → = d u ( r ) d r ∣ r 0 = 0 \overrightarrow {f(r)} = \frac{du(r)}{dr}|_{r_0=0} f(r) =drdu(r)r0=0
  • r > r 0 r>r_0 r>r0时, f ( r ) < 0 f(r)<0 f(r)<0,吸引力,异性电荷之间的库伦吸引力
  • r = r m r=r_m r=rm时, f ( r ) → = d 2 u ( r ) d 2 r ∣ r m = 0 \overrightarrow {f(r)} = \frac{d^2u(r)}{d^2r}|_{r_m=0} f(r) =d2rd2u(r)rm=0 f ( r m ) f(r_m) f(rm)最小,吸引力最大

2.2 晶体的相互作用能

  • 两原子 u ( r ) = − A r m + B r n u(r)=-\frac{A}{r^m}+\frac{B}{r^n} u(r)=rmA+rnB,A、B、m、n都是大于零的常数,负号代表吸引能,正号是排斥能

  • N原子时 u i = ∑ j ≠ i N u ( r i j ) u_i=\sum_{j\not=i}^N u(r_{ij}) ui=j=iNu(rij) U ( r ) = 1 2 ∑ i N ∑ j N u ( r i j ) U(r)= \frac{1}{2}\sum_{i}^N\sum_{j}^N u(r_{ij}) U(r)=21iNjNu(rij),忽略表层原子和内层原子的区别时 U ( r ) = N 2 ∑ j ≠ 1 N u ( r i j ) U(r)=\frac{N}{2}\sum_{j\not=1}^N u(r_{ij}) U(r)=2Nj=1Nu(rij)

2.3 平衡距离、体弹性模量、抗张强度

  • 平衡距离: d u ( r ) d r ∣ r = r 0 = 0 \frac{du(r)}{dr}|_{r=r_0}=0 drdu(r)r=r0=0时的r
  • 体积弹性模量(抗形变能力):晶体中有N个原子,V是晶体体积,U为晶体的相互作用势能。设在压强P的作用下,晶体体积增加 △ V \triangle V V,总能量增加 △ U \triangle U U,晶体实际对外做功为 P ∗ △ V = − △ U , P = − ∂ U ∂ V P*\triangle V=-\triangle U,P=-\frac{\partial U}{\partial V} PV=U,P=VU平衡条件下 ( ∂ U ∂ V ) v 0 = 0 (\frac{\partial U}{\partial V})_{v_0}=0 (VU)v0=0
    理想的无外力P=0,实际P不是0,所以可以在V=0附近泰勒展开P P = − ∂ U ∂ V = − ( ∂ 2 U ∂ V 2 ) v 0 δ V + . . . P=-\frac{\partial U}{\partial V}=-(\frac{\partial^2 U}{\partial V^2})_{v_0}\delta V+... P=VU=(V22U)v0δV+... P = − ( ∂ 2 U ∂ V 2 ) v 0 δ V = − ( ∂ 2 U ∂ V 2 ) v 0 V 0 δ V V 0 P=-(\frac{\partial^2 U}{\partial V^2})_{v_0}\delta V=-(\frac{\partial^2 U}{\partial V^2})_{v_0}V_0\frac{\delta V}{V_0} P=(V22U)v0δV=(V22U)v0V0V0δV由此可得胡可定律: P = − K △ V V P=-K\frac{\triangle V}{V} P=KVVK为体弹性模量
  • 抗张强度:晶格所能容耐的最大张力,相应于晶格中原胞间的最大引力。
    在这里插入图片描述 r = r m , d 2 u ( r ) d 2 r ∣ r m = 0 r =r_m,\frac{d^2u(r)}{d^2r}|_{r_m}=0 r=rm,d2rd2u(r)rm=0
    v:每个原胞的平均体积
    u:每个原胞的平均相互作用势能
    U=Nu,V=Nv,设在压强P作用下,晶体体积增加 △ V \triangle V V,总能量增加 △ U \triangle U U,代入
    P ∗ △ V = − △ U P*\triangle V=-\triangle U PV=U P = − ∂ U ∂ V = − ∂ ( N u ) ∂ ( N v ) = − ∂ u ∂ v P=-\frac{\partial U}{\partial V}=-\frac{\partial (Nu)}{\partial (N v)}=-\frac{\partial u}{\partial v} P=VU=(Nv)(Nu)=vu − P m = ( ∂ U ∂ V ) V m = − ( ∂ u ∂ v ) v m -P_m=(\frac{\partial U}{\partial V})_{V_m}=-(\frac{\partial u}{\partial v})_{v_m} Pm=(VU)Vm=(vu)vm ∂ 2 u ∂ v 2 ∣ v m = 0 \frac{\partial^2 u}{\partial v^2}|_{v_m}=0 v22uvm=0

3. 非极性分子

3.1 非极性分子晶体中吸引能的计算

在这里插入图片描述

  • 当r很大时,为两个独立的谐振子,恢复力系数为c。
    恢复力: f 1 = − c x 1 , f 2 = − c x 2 f_1=-cx_1,f_2=-cx_2 f1=cx1,f2=cx2
    势能: u 1 ∣ ∣ 2 = c 2 x 1 ∣ ∣ 2 2 u_{1||2}=\frac{c}{2}x^2_{1||2} u1∣∣2=2cx1∣∣22
    动能: u 1 ∣ ∣ 2 = p 1 ∣ ∣ 2 2 2 m u_{1||2}=\frac{p^2_{1||2}}{2m} u1∣∣2=2mp1∣∣22
    每个谐振子能量: E 1 ∣ ∣ 2 = u 动 1 ∣ ∣ 2 + u 势 1 ∣ ∣ 2 E_{1||2}=u_{动1||2}+u_{势1||2} E1∣∣2=u1∣∣2+u1∣∣2
    当r较大时,谐振之间无相互作用,系统能量为: E = E 1 + E 2 E=E_1+E_2 E=E1+E2
    谐振子频率: ω = c m \omega=\sqrt{\frac{c}{m}} ω=mc
    谐振子速度: v = ω 2 π v=\frac{\omega}{2\pi} v=2πω

谐振子:做简谐运动的质点

  • 当r很小时,相互作用能不能忽略 u = q 1 q 2 4 π ϵ 0 r u=\frac{q_1q_2}{4\pi\epsilon_0r} u=4πϵ0rq1q2
    在这里插入图片描述
    在这里插入图片描述 u 12 = u 1 ′ 3 ′ + u 1 ′ 4 ′ + u 2 ′ 3 ′ + u 2 ′ 4 ′ = e 2 x 1 x 2 2 π ϵ 0 r 3 u_{12}=u_{1'3'}+u_{1'4'}+u_{2'3'}+u_{2'4'}=\frac{e^2x_1x_2}{2\pi\epsilon_0r^3} u12=u13+u14+u23+u24=2πϵ0r3e2x1x2
    E = E 1 + E 2 + u 12 E=E_1+E_2+u_{12} E=E1+E2+u12

3.2 非极性分子晶体中结合能的极端

两个原子距离靠近,电荷分布重叠,系统的静电能改变,排斥能和 r − 12 r^{-12} r12成正比, n = 12 n=12 n=12

3.3 非极性分子晶体中相互作用势能

  • 两原子
    u ( r ) = − A r 6 + B r 12 u(r)=-\frac{A}{r^6}+\frac{B}{r^{12}} u(r)=r6A+r12BAB都是正的经验参数,还有一种表达形式

u ( r ) = 4 ϵ [ ( σ r ) 12 − ( σ r ) 6 ] u(r)=4\epsilon[(\frac{\sigma}{r})^{12}-(\frac{\sigma}{r})^{6}] u(r)=4ϵ[(rσ)12(rσ)6] σ ≡ ( A B ) 6 , ϵ ≡ A 2 4 B \sigma\equiv(\frac{A}{B})^6,\epsilon\equiv\frac{A^2}{4B} σ(BA)6,ϵ4BA2 4 ϵ σ 6 = A , 4 ϵ σ 12 = B 4\epsilon\sigma^6=A,4\epsilon\sigma^{12}=B 4ϵσ6=A,4ϵσ12=B物理意义: 2 1 6 ϵ = r 0 , σ = r 1 2^{\frac{1}{6}}\epsilon=r_0,\sigma=r_1 261ϵ=r0,σ=r1在这里插入图片描述

  • N原子
    u ( r 1 j ) = 4 ϵ [ ( σ r 1 j ) 12 − ( σ r 1 j ) 6 ] u(r_{1j})=4\epsilon[(\frac{\sigma}{r_{1j}})^{12}-(\frac{\sigma}{r_{1j}})^{6}] u(r1j)=4ϵ[(r1jσ)12(r1jσ)6]
    U ( r ) = N 2 ∑ j ≠ 1 N u ( r 1 j ) , j 从 2 开始 U(r)=\frac{N}{2}\sum_{j\not=1}^{N}u(r_{1j}),j从2开始 U(r)=2Nj=1Nu(r1j)j2开始
    设R为晶体中两原子间的最短距离 r 1 j = a j R r_{1j}=a_jR r1j=ajR,a是一个倍数。两个原子之间的距离是两原子间最短距离的倍数,可以代入上式得 U ( R ) = 2 N ϵ [ ( ∑ j ≠ 1 N 1 a j 12 ) ( σ R ) 12 − ( ∑ j ≠ 1 N 1 a j 6 ) ( σ R ) 6 ] U(R)=2N\epsilon[(\sum_{j\not=1}^N\frac{1}{a^{12}_{j}})(\frac{\sigma}{R})^{12}-(\sum_{j\not=1}^N\frac{1}{a^{6}_{j}})(\frac{\sigma}{R})^{6}] U(R)=2Nϵ[(j=1Naj121)(Rσ)12(j=1Naj61)(Rσ)6] A 12 = ∑ j ≠ 1 N 1 a j 12 , A 6 = ∑ j ≠ 1 N 1 a j 6 A_{12}=\sum_{j\not=1}^N\frac{1}{a^{12}_{j}},A_6=\sum_{j\not=1}^N\frac{1}{a^{6}_{j}} A12=j=1Naj121,A6=j=1Naj61,都只与晶体结构有关

3.4 非极性分子晶体的平衡距离,结合能和体弹性模量

  1. 平衡距离
    R是两原子间的最短距离,晶体结构一旦确定,R和晶格常数a的关系也就确定。平衡距离时候,斥力等于引力,分子间相互作用势能求导为零,得出 R 0 = ( 2 A 12 A 6 ) 1 6 σ R_0=(\frac{2A_{12}}{A_6})^{\frac{1}{6}}\sigma R0=(A62A12)61σ

FCC: a = 2 R a=\sqrt{2}R a=2 R,BCC: a = 2 3 R a=\frac{2}{\sqrt{3}}R a=3 2R

  1. 结合能
    R 0 R_0 R0代回 U ( r ) U(r) U(r) U ( R 0 ) = − ϵ A 6 2 2 A 12 N U(R_0)=-\frac{\epsilon A_6^2}{2A_{12}}N U(R0)=2A12ϵA62N
    平均每个原子的相互作用能: u 0 = − ϵ A 6 2 2 A 12 u_0=-\frac{\epsilon A_6^2}{2A_{12}} u0=2A12ϵA62
  2. 体弹性模量
    N:晶体中原子数
    V:晶体体积
    U:晶体的相互作用势能
    v:每个原子的平均体积
    u:每个原子的平均相互作用势能
    U=Nu,V=Nv
    k = ( ∂ 2 U ∂ V 2 ) ∣ V 0 ∗ V 0 = ( ∂ 2 u ∂ v 2 ) ∣ v 0 ∗ v 0 k=(\frac{\partial^2 U}{\partial V^2})|_{V_0}*V_0=(\frac{\partial^2 u}{\partial v^2})|_{v_0}*v_0 k=(V22U)V0V0=(v22u)v0v0
  • 原子体积v和最短距离R的关系
    v = α R 3 v=\alpha R^3 v=αR3,有 d v = ( 3 α R 2 ) d R dv =(3\alpha R^2 )dR dv=(3αR2)dR,可得 d R d v = 1 3 α R 2 \frac{dR}{dv}=\frac{1}{3\alpha R^2} dvdR=3αR21
    ∂ u ∂ v = ∂ u ∂ R d R d v = 1 3 α R 2 d u d R \frac{\partial u}{\partial v}=\frac{\partial u}{\partial R}\frac{dR}{dv}=\frac{1}{3\alpha R^2}\frac{du}{dR} vu=RudvdR=3αR21dRdu ∂ 2 u ∂ v 2 = ∂ u ∂ v ( 1 3 α R 2 d u d R ) \frac{\partial^2 u}{\partial v^2}=\frac{\partial u}{\partial v}(\frac{1}{3\alpha R^2}\frac{du}{dR}) v22u=vu(3αR21dRdu) = 1 3 α R 2 d u d R ( 1 3 α R 2 d u d R ) =\frac{1}{3\alpha R^2}\frac{du}{dR}(\frac{1}{3\alpha R^2}\frac{du}{dR}) =3αR21dRdu(3αR21dRdu) = 1 3 α R 2 ( − 2 3 α R 2 d u d R + 1 3 α R 2 d 2 u d R 2 ) =\frac{1}{3\alpha R^2}(-\frac{2}{3\alpha R^2}\frac{du}{dR}+\frac{1}{3\alpha R^2}\frac{d^2u}{dR^2}) =3αR21(3αR22dRdu+3αR21dR2d2u)平衡时,一阶导数等于零, v = v 0 , R = R 0 v=v_0,R=R_0 v=v0,R=R0 ( ∂ 2 u ∂ v 2 ) v 0 = 1 9 a 2 R 4 ( d 2 u d R 2 ) ∣ R 0 (\frac{\partial^2 u}{\partial v^2})_{v_0}=\frac{1}{9a^2R^4}(\frac{d^2 u}{dR^2})|_{R_0} (v22u)v0=9a2R41(dR2d2u)R0 体弹性模量: K 0 = ( ∂ 2 u ∂ v 2 ) v 0 ∗ v 0 体弹性模量:K_0=(\frac{\partial^2 u}{\partial v^2})_{v_0}*v_0 体弹性模量:K0=(v22u)v0v0 = 1 9 α 2 R 4 ( d 2 u d R 2 ) ∣ R 0 ∗ α R 3 =\frac{1}{9\alpha ^2R^4}(\frac{d^2 u}{dR^2})|_{R_0}*\alpha R^3 =9α2R41(dR2d2u)R0αR3 = 1 9 α R 0 ( d 2 u d R 2 ) ∣ R 0 =\frac{1}{9\alpha R_0}(\frac{d^2 u}{dR^2})|_{R_0} =9αR01(dR2d2u)R0
    • 对于FCC结构 v = 1 4 a 3 = 1 4 ( 2 R ) 3 = 2 2 v=\frac{1}{4}a^3=\frac{1}{4}(\sqrt2 R)^3=\frac{\sqrt2}{2} v=41a3=41(2 R)3=22 ⇒ α = 2 2 \Rightarrow \alpha =\frac{\sqrt 2}{2} α=22

根据 U ( R ) = 2 N ϵ [ A 12 ( σ R ) 12 − A 6 ( σ R ) 6 ] U(R)=2N_\epsilon[A_{12}(\frac{\sigma}{R})^{12}-A_6(\frac{\sigma}{R})^{6}] U(R)=2Nϵ[A12(Rσ)12A6(Rσ)6],得每个原子相互作用势能 U ( R ) = 2 ϵ [ A 12 ( σ R ) 12 − A 6 ( σ R ) 6 ] U(R)=2\epsilon[A_{12}(\frac{\sigma}{R})^{12}-A_6(\frac{\sigma}{R})^{6}] U(R)=2ϵ[A12(Rσ)12A6(Rσ)6] d u d R ∣ R = R 0 = 0 ⇒ R 0 = ( 2 A 12 A 6 ) 1 6 σ \frac{d u}{d R}|_{R=R_0}=0\Rightarrow R_0=(\frac{2A_{12}}{A_6})^{\frac{1}{6}}\sigma dRduR=R0=0R0=(A62A12)61σ

4. 离子晶体

4.1 离子晶体的相互作用能平衡距离和体弹性模量

  1. 离子晶体的结合能
    组成:
    1.库伦能 u = q 1 q 2 4 π ϵ 0 r u=\frac{q_1q_2}{4\pi\epsilon_0r} u=4πϵ0rq1q2
    2.排斥能 u 斥 = b r n u_斥=\frac{b}{r^n} u=rnb,b是比例常数,n是玻恩系数,主要由泡利不相容原理引起
    相互作用能: 两个离子: u 1 j = u + u 斥 两个离子:u_{1j}=u+u_斥 两个离子:u1j=u+u = ± z 2 e 2 4 π ϵ 0 r 1 j + b r 1 j n =\pm \frac{z^2e^2}{4\pi\epsilon_0r_{1j}}+\frac{b}{r^n_{1j}} =±4πϵ0r1jz2e2+r1jnb同号离子去正,异号离子取负
    N 个离子: U = N 2 ∑ j ( ± z 2 e 2 4 π ϵ 0 r 1 j + b r 1 j n ) N个离子:U=\frac{N}{2}\sum_j(\pm \frac{z^2e^2}{4\pi\epsilon_0r_{1j}}+\frac{b}{r^n_{1j}}) N个离子:U=2Nj(±4πϵ0r1jz2e2+r1jnb)
    同种离子取正号,异种离子取负号。
    设粒子间的最短距离为R: r 1 j = a j R , a j ≥ 1 r_{1j}=a_jR,a_j \geq1 r1j=ajR,aj1 U = N 2 ∑ j [ ± ∑ j ( ± 1 a j ) + 1 R n ∑ j ( b a j n ) ] U=\frac{N}{2}\sum_j[\pm \sum_j(\pm\frac{1}{a_j})+\frac{1}{R^n}\sum_j(\frac{b}{a^n_j})] U=2Nj[±j(±aj1)+Rn1j(ajnb)]
    μ = ∑ j ( ± 1 a j ) ; B = ∑ j ( b a j n ) \mu=\sum_j(\pm\frac{1}{a_j});B=\sum_j(\frac{b}{a^n_j}) μ=j(±aj1);B=j(ajnb) U = − N 2 [ μ z 2 e 2 4 π ϵ 0 R − B R n ] U=-\frac{N}{2}[\frac{\mu z^2e^2}{4\pi\epsilon_0R}-\frac{B}{R^n}] U=2N[4πϵ0Rμz2e2RnB] μ \mu μ是马德隆常数,B,n是晶格参量
  2. B,n与k的关系
    ( d U d R ) R 0 = − N 2 [ μ z 2 e 2 4 π ϵ 0 R 0 2 − n B R n + 1 ] = 0 (\frac{dU}{dR})_{R_0}=-\frac{N}{2}[\frac{\mu z^2e^2}{4\pi\epsilon_0R^2_0}-\frac{nB}{R^{n+1}}]=0 (dRdU)R0=2N[4πϵ0R02μz2e2Rn+1nB]=0 B = μ z 2 e 2 4 π ϵ 0 n R 0 n − 1 B=\frac{\mu z^2e^2}{4\pi\epsilon_0n}R^{n-1}_0 B=4πϵ0nμz2e2R0n1 μ , R 0 \mu,R_0 μ,R0可以实验测得,只要求出n即可求出B,设粒子的平均体积: v = a R 3 v=aR^3 v=aR3,则每个粒子的作用能 u = U N = 1 2 [ μ z 2 e 2 4 π ϵ 0 R − B R n ] u=\frac{U}{N}=\frac{1}{2}[\frac{\mu z^2e^2}{4\pi\epsilon_0R}-\frac{B}{R^n}] u=NU=21[4πϵ0Rμz2e2RnB]体积模量: K = ( ∂ 2 U ∂ V 2 ) ∣ V 0 ∗ V 0 = ( ∂ 2 u ∂ v 2 ) ∣ v 0 ∗ v 0 K =(\frac{\partial^2 U}{\partial V^2})|_{V_0}*V_0=(\frac{\partial^2 u}{\partial v^2})|_{v_0}*v_0 K=(V22U)V0V0=(v22u)v0v0 = 1 9 α R 0 ( d 2 u d R 2 ) ∣ R 0 =\frac{1}{9\alpha R_0}(\frac{d^2 u}{dR^2})|_{R_0} =9αR01(dR2d2u)R0 d u d R = − 1 2 [ μ z 2 e 2 4 π ϵ 0 R 2 − n B R n + 1 ] \frac{du}{dR}=-\frac{1}{2}[\frac{\mu z^2e^2}{4\pi\epsilon_0R^2}-\frac{nB}{R^{n+1}}] dRdu=21[4πϵ0R2μz2e2Rn+1nB] d 2 u d R 2 = − 1 2 [ 2 μ z 2 e 2 4 π ϵ 0 R 0 2 − n ( n + 1 ) B R n + 2 ] \frac{d^2u}{dR^2}=-\frac{1}{2}[\frac{2\mu z^2e^2}{4\pi\epsilon_0R^2_0}-\frac{n(n+1)B}{R^{n+2}}] dR2d2u=21[4πϵ0R022μz2e2Rn+2n(n+1)B]代入参量B d 2 u d R 2 ∣ R 0 = μ z 2 e 2 8 π ϵ 0 R 0 3 ( n − 1 ) \frac{d^2u}{dR^2}|_{R_0}=\frac{\mu z^2e^2}{8\pi\epsilon_0R^3_0}(n-1) dR2d2uR0=8πϵ0R03μz2e2(n1)代回K K = μ z 2 e 2 72 α π ϵ 0 R 0 4 ( 1 − n ) K=\frac{\mu z^2e^2}{72\alpha \pi\epsilon_0R^4_0}(1-n) K=72απϵ0R04μz2e2(1n)
    通过实验室测得 μ , R 0 , K 0 \mu,R_0,K_0 μ,R0,K0,由K求出n,在求出B,最后即可求出相互作用能 U 0 U_0 U0 U 0 = − N 2 [ μ z 2 e 2 4 π ϵ 0 R − B R n ] U_0=-\frac{N}{2}[\frac{\mu z^2e^2}{4\pi\epsilon_0R}-\frac{B}{R^n}] U0=2N[4πϵ0Rμz2e2RnB] = N μ e 2 8 π ϵ 0 R 0 ( 1 − 1 n ) =\frac{N\mu e^2}{8\pi\epsilon_0R_0}(1-\frac{1}{n}) =8πϵ0R0Nμe2(1n1) E b = ∣ U 0 ∣ N μ e 2 8 π ϵ 0 R 0 ( 1 − 1 n ) E_b=|U_0|\frac{N\mu e^2}{8\pi\epsilon_0R_0}(1-\frac{1}{n}) Eb=U08πϵ0R0Nμe2(1n1)

4.2 离子晶体中马德隆常数的计算

马德隆常数 μ \mu μ和晶体几何结构有关。R为粒子间最短距离。 μ = ∑ j ( ± 1 a j ) , r 1 j = a j R , a j > 1 \mu=\sum_j(\pm\frac{1}{a_j}),r_{1j}=a_jR,a_j>1 μ=j(±aj1),r1j=ajR,aj>1

  • 一维:级数求和
    选定某一负离子为参考离子为原点,对于正离子取正号,负离子取负号。
    在这里插入图片描述 μ = 2 ( 1 − 1 2 + 1 3 + 1 4 + . . . ) \mu=2(1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...) μ=2(121+31+41+...)参考 l n ( 1 + x ) ln(1+x) ln(1+x)的级数展开
  • 三维
    把晶体看成一个整体,晶胞内所有离子的电荷数和为零把把中性晶胞中的每一个离子对参考离子库仑能的贡献叠加起来得到马德隆常数。 u = − ( ± q 2 4 π ϵ 0 r ) = − ( ± q 2 4 π ϵ 0 R a j ) u=-(\pm\frac{q^2}{4\pi\epsilon_0r})=-(\pm\frac{q^2}{4\pi\epsilon_0Ra_j}) u=(±4πϵ0rq2)=(±4πϵ0Rajq2) = − ( ± A a j ) =-(\pm\frac{A}{a_j}) =(±ajA)
    库伦能贡献份额: A = q 2 4 π ϵ 0 R A=\frac{q^2}{4\pi\epsilon_0R} A=4πϵ0Rq2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值