文章目录
1. 离散时间信号的序列描述
1.1 常见的离散时间序列
离散时间信号可视为连续时间信号的采样,若模拟信号为
x
a
(
t
)
x_a(t)
xa(t)对它进行以周期为T的等间采样,则得到的离散时间信号为
x
a
(
t
)
∣
t
=
n
T
=
x
a
(
n
T
)
=
x
(
n
)
,
−
∞
<
n
<
∞
x_a(t)|_{t=nT}=x_a(nT)=x(n),-\infty<n<\infty
xa(t)∣t=nT=xa(nT)=x(n),−∞<n<∞其中x(n)称为离散时间信号(数值序列),n取只能整数。
x(n)有三种表示方法:用集合符号,用公式,用图形。如果用集合表示,有下划线的元素是零时刻的值。
-
单位采样序列 δ ( n ) = { 1 , n = 0 0 , n ≠ 0 \delta(n) = \begin{cases}1,n = 0\\0,n\not=0\\\end{cases} δ(n)={1,n=00,n=0
对于一个任意序列x(n),都可以用单位脉冲序列 δ ( n ) \delta(n) δ(n)的位移加权和表示如下 x ( n ) = ∑ k = − ∞ ∞ x ( k ) δ ( n − k ) x(n) =\sum_{k=-\infty}^\infty x(k)\delta(n-k) x(n)=k=−∞∑∞x(k)δ(n−k) -
单位阶跃序列 u ( n ) = { 1 , n ≥ 0 0 , n < 0 u(n) = \begin{cases}1,n\geq 0\\0,n<0\\\end{cases} u(n)={1,n≥00,n<0
-
单位阶跃序列和单位采样序列的关系
δ ( n ) = u ( n ) − u ( n − 1 ) \delta(n) =u(n)-u(n-1) δ(n)=u(n)−u(n−1)
u ( n ) = ∑ m = 0 ∞ δ ( n − m ) u(n)= \sum_{m=0}^\infty \delta (n-m) u(n)=m=0∑∞δ(n−m) -
矩形序列 R n = { 1 , 0 ≤ n ≤ N − 1 0 , 其他 R_n= \begin{cases}1,0\leq n\leq N-1\\0,其他\\\end{cases} Rn={1,0≤n≤N−10,其他
R n = u ( n − N 1 ) − u ( n − N 2 ) R_n=u(n-N_1)-u(n-N_2) Rn=u(n−N1)−u(n−N2) , N 2 − N 1 = N ,N_2-N_1=N ,N2−N1=N -
实指数序列 x ( n ) = a ∣ n ∣ , ∀ n , a ∈ R x(n)=a^{|n|},\forall n,a\in R x(n)=a∣n∣,∀n,a∈R
0 < a < 1 0<a<1 0<a<1,双边实指数
0 < a < 1 0<a<1 0<a<1,单边实指数 -
正弦序列 x ( n ) = s i n ( ω n ) x(n)=sin(\omega n) x(n)=sin(ωn)
ω \omega ω:数字频率,单位是弧度,表示一个序列的变化速率,或者两个序列值之间的相位变化。
富裕模拟信号 s i n ( Ω t ) sin(\Omega t) sin(Ωt),进行采样 s i n ( Ω t ) ∣ t = n T = s i n ( Ω n T ) = s i n ( ω n ) = x ( n ) sin(\Omega t)|_{t=nT}=sin(\Omega nT)=sin(\omega n)=x(n) sin(Ωt)∣t=nT=sin(ΩnT)=sin(ωn)=x(n) ω = Ω T \omega =\Omega T ω=ΩT,凡是由模拟信号采样得到的序列 Ω \Omega Ω和数字频率成线性关系,采样周期和采样频率互为倒数, ω = Ω f \omega=\frac{\Omega}{f} ω=fΩ -
复指数序列 x ( n ) = e ( σ + j ω 0 ) n x(n)=e^{(\sigma +j\omega _0)^n} x(n)=e(σ+jω0)n
ω 0 \omega_0 ω0:数字频率, σ \sigma σ:衰减因子 -
周期序列 x ( n ) = x ( n + N ) x(n)=x(n+N) x(n)=x(n+N)
1.2 序列的基本运算
- 序列加法
x
(
n
)
=
x
1
(
n
)
+
x
2
(
n
)
x(n)=x_1(n)+x_2(n)
x(n)=x1(n)+x2(n)
同序号的序列值逐项相加 - 序列乘法
x
(
n
)
=
x
1
(
n
)
∗
x
2
(
n
)
x(n)=x_1(n)*x_2(n)
x(n)=x1(n)∗x2(n)
逐项对应相乘,是一种非线性运算 - 序列的倍乘
y
(
n
)
=
a
x
(
n
)
y(n)=ax(n)
y(n)=ax(n)
所有的序号下序列值同乘一个常数a - 序列移位、翻转和尺度变换
x ( n − n 0 ) x(n-n_0) x(n−n0):移位
x ( − n ) x(-n) x(−n):翻转
x ( m n ) x(mn) x(mn):尺度变换
当 n 0 > 0 n_0>0 n0>0:序列右移,是x(n)的延时序列。当 n 0 < 0 n_0<0 n0<0,序列左移,是x(n)的超前序列 - 序列绝对值的和
s
x
=
∑
n
=
−
∞
∞
∣
x
(
n
)
∣
s_x=\sum_{n=-\infty}^\infty|x(n)|
sx=∑n=−∞∞∣x(n)∣
如果 s x < ∞ s_x<\infty sx<∞,x(n)为绝对可和序列,如果每一项的绝对值都小于一个正整数 M x M_x Mx,则x(n)为有界序列 - 序列能量
复数序列的能量: E x = ∑ n = − ∞ ∞ ∣ x ( n ) ∣ 2 E_x=\sum_{n=-\infty}^\infty|x(n)|^2 Ex=∑n=−∞∞∣x(n)∣2
周期序列平均功率: P x = 1 N ∑ n = 0 N − 1 ∣ x ( n ) ∣ 2 P_x=\frac{1}{N}\sum_{n=0}^{N-1}|x(n)|^2 Px=N1∑n=0N−1∣x(n)∣2
2. 离散时间系统的时域分析
2.1 离散时间系统
输入x(n),经过变换
T
[
.
]
T[.]
T[.],输出y(n)
y
(
n
)
=
T
[
x
(
n
)
]
y(n)=T[x(n)]
y(n)=T[x(n)],n是整数
2.2 线性系统
当且仅当系统
L
[
.
]
L[.]
L[.]满足叠加原理时是线性系统
y
1
(
n
)
=
L
[
x
1
(
n
)
]
,
y
2
(
n
)
=
L
[
x
2
(
n
)
]
,
∀
x
1
(
n
)
,
x
2
(
n
)
y_1(n)=L[x_1(n)],y_2(n)=L[x_2(n)],\forall x_1(n),x_2(n)
y1(n)=L[x1(n)],y2(n)=L[x2(n)],∀x1(n),x2(n)
可加性:
L
[
x
1
(
n
)
+
x
2
(
n
)
]
=
L
[
x
1
(
n
)
]
+
L
[
x
2
(
n
)
]
L[x_1(n)+x_2(n)]=L[x_1(n)]+L[x_2(n)]
L[x1(n)+x2(n)]=L[x1(n)]+L[x2(n)]
齐次性:
L
[
a
1
x
1
(
n
)
]
=
a
1
L
[
x
1
(
n
)
]
L[a_1x_1(n)]=a_1L[x_1(n)]
L[a1x1(n)]=a1L[x1(n)]
叠加性就是可加性和齐次性的结合
2.3 线性时不变系统(LTI)
- 系统对于输入信号的响应于信号加给系统的时间无关,
y
(
n
)
=
T
[
x
(
n
)
]
y(n)=T[x(n)]
y(n)=T[x(n)],对于任意整数
n
0
n_0
n0,一定存在
y
(
n
−
n
0
)
=
T
[
x
(
n
−
n
0
)
]
y(n-n_0)=T[x(n-n_0)]
y(n−n0)=T[x(n−n0)]。
假设系统的输入为 x ( n ) = δ ( n ) x(n)=\delta(n) x(n)=δ(n),系统输出 y ( n ) y(n) y(n)的初始状态为0,这样的条件下系统输出为系统的单位脉冲响应。 h ( n ) = T [ δ ( n ) ] h(n)=T[\delta(n)] h(n)=T[δ(n)]。
任意输入x(n)经过线性系统时的输出y(n)表示如下
y ( n ) = T [ x ( n ) ] y(n)=T[x(n)] y(n)=T[x(n)]
= T [ ∑ m = − ∞ + ∞ x ( m ) ( δ ( n − m ) ) ] =T[\sum_{m=-\infty}^{+\infty}x(m)(\delta(n-m))] =T[∑m=−∞+∞x(m)(δ(n−m))]
= ∑ m = − ∞ + ∞ T [ x ( m ) ( δ ( n − m ) ) ] = ∑ m = − ∞ + ∞ x ( m ) T ( δ ( n − m ) ) =\sum_{m=-\infty}^{+\infty}T[x(m)(\delta(n-m))]=\sum_{m=-\infty}^{+\infty}x(m)T(\delta(n-m)) =∑m=−∞+∞T[x(m)(δ(n−m))]=∑m=−∞+∞x(m)T(δ(n−m))
= ∑ m = − ∞ + ∞ x ( m ) h ( n − m ) =\sum_{m=-\infty}^{+\infty}x(m)h(n-m) =∑m=−∞+∞x(m)h(n−m)
这就是线性卷积 x ( n ) ∗ h ( n ) x(n)^*h(n) x(n)∗h(n) - LTI系统输入与输出之间的关系
设输入序列为x(n),将它表示为单位脉冲序列的移位加权和 x ( n ) = ∑ m = − ∞ + ∞ x ( m ) δ ( n − m ) x(n)=\sum_{m=-\infty}^{+\infty}x(m)\delta(n-m) x(n)=m=−∞∑+∞x(m)δ(n−m)系统的输出序列为 y ( n ) = L [ ∑ m = − ∞ + ∞ x ( m ) δ ( n − m ) ] y(n)=L[\sum_{m=-\infty}^{+\infty}x(m)\delta(n-m)] y(n)=L[m=−∞∑+∞x(m)δ(n−m)]
= ∑ m = − ∞ + ∞ x ( m ) L [ δ ( n − m ) ] =\sum_{m=-\infty}^{+\infty}x(m)L[\delta(n-m)] =∑m=−∞+∞x(m)L[δ(n−m)]
= ∑ m = − ∞ + ∞ x ( m ) h ( n − m ) =\sum_{m=-\infty}^{+\infty}x(m)h(n-m) =∑m=−∞+∞x(m)h(n−m)
= x ( n ) ∗ h ( n ) =x(n)^*h(n) =x(n)∗h(n) - 系统的性质:系统的因果性和稳定性是保证系统物理可实现和正常运行的重要条件
- 因果系统:系统n时刻的输出,只取决于n时刻以及n时刻一千多输入,与n时刻之后的输入序列无关。因果系统物理可实现。
对于LTI系统具有因果性的充要条件式单位脉冲响应 h ( n ) h(n) h(n)满足 h ( n ) = 0 , n < 0 h(n)=0,n<0 h(n)=0,n<0 ,既n时刻前没有加入信号的时候,输出只能为零
- 稳定性:系统有界输入时,输出也是有界的,系统稳定时h(n)是收敛序列
系统稳定的充要条件是单位脉冲响应绝对可和 ∑ n = − ∞ + ∞ ∣ h ( n ) ∣ < ∞ \sum_{n=-\infty}^{+\infty}|h(n)|<\infty ∑n=−∞+∞∣h(n)∣<∞
2.4 线性卷积
x
(
n
)
∗
h
(
n
)
=
∑
m
=
−
∞
∞
x
(
m
)
h
(
n
−
m
)
x(n)^*h(n)=\sum_{m=-\infty}^\infty x(m)h(n-m)
x(n)∗h(n)=m=−∞∑∞x(m)h(n−m)
将h(m)翻转并移位可得到
h
(
n
−
m
)
h(n-m)
h(n−m)
- 性质:两个序列的长度是N和M,卷积后序列长度为:N+M-1
- 线性卷积服从交换律、结合律和分配律
- 序列本身与单位脉冲序列的线性卷积等于序列本身
- 序列与移位的单位脉冲序列 δ ( n − n 0 ) \delta(n-n_0) δ(n−n0)进行线性卷积相当于将序列本身移位 n 0 n_0 n0
3. 离散时间系统的差分方程描述
模拟系统:微分方程。离散时间系统:差分方程
- N阶线性常系数差分方程 y ( n ) = ∑ i = 0 M b i x ( n − i ) − ∑ k = 1 N a k y ( n − k ) y(n)=\sum_{i=0}^Mb_ix(n-i)-\sum_{k=1}^Na_ky(n-k) y(n)=i=0∑Mbix(n−i)−k=1∑Naky(n−k)
线性:x和y都是一次幂,且没有交叉项,阶数由k的最大和最小之差决定
求解差分方程的基本方法:
- 变换域方法,Z变换
- 时域解法:数值解,递推解法,求闭合形式的解(齐次解和特解)
- 对于实际系统,用递推法求解,只向 n > 0 n>0 n>0的方向递推。
- 差分方程本身不能确定系统是因果解还是非因果解,还需要初始条件进行限制。线性常系数差分方程描述的不一定是线性时不变系统,这和系统是初始状态有关
- 但是约定凡使用线性差分方程描述的系统都是时不变系统