文章目录
1. 离散时间信号的序列描述
1.1 常见的离散时间序列
离散时间信号可视为连续时间信号的采样,若模拟信号为 x a ( t ) x_a(t) xa(t)对它进行以周期为T的等间采样,则得到的离散时间信号为 x a ( t ) ∣ t = n T = x a ( n T ) = x ( n ) , − ∞ < n < ∞ x_a(t)|_{t=nT}=x_a(nT)=x(n),-\infty<n<\infty xa(t)∣t=nT=xa(nT)=x(n),−∞<n<∞其中x(n)称为离散时间信号(数值序列),n取只能整数。
x(n)有三种表示方法:用集合符号,用公式,用图形。如果用集合表示,有下划线的元素是零时刻的值。
-
单位采样序列 δ ( n ) = { 1 , n = 0 0 , n ≠ 0 \delta(n) = \begin{cases}1,n = 0\\0,n\not=0\\\end{cases} δ(n)={ 1,n=00,n=0
对于一个任意序列x(n),都可以用单位脉冲序列 δ ( n ) \delta(n) δ(n)的位移加权和表示如下 x ( n ) = ∑ k = − ∞ ∞ x ( k ) δ ( n − k ) x(n) =\sum_{k=-\infty}^\infty x(k)\delta(n-k) x(n)=k=−∞∑∞x(k)δ(n−k) -
单位阶跃序列 u ( n ) = { 1 , n ≥ 0 0 , n < 0 u(n) = \begin{cases}1,n\geq 0\\0,n<0\\\end{cases} u(n)={ 1,n≥00,n<0
-
单位阶跃序列和单位采样序列的关系
δ ( n ) = u ( n ) − u ( n − 1 ) \delta(n) =u(n)-u(n-1) δ(n)=u(n)−u(n−1)
u ( n ) = ∑ m = 0 ∞ δ ( n − m ) u(n)= \sum_{m=0}^\infty \delta (n-m) u(n)=m=0∑∞δ(n−m) -
矩形序列 R n = { 1 , 0 ≤ n ≤ N − 1 0 , 其他 R_n= \begin{cases}1,0\leq n\leq N-1\\0,其他\\\end{cases} Rn={ 1,0≤n≤N−10,其他
R n = u ( n − N 1 ) − u ( n − N 2 ) R_n=u(n-N_1)-u(n-N_2) Rn=u(n−N1)−u(n−N2) , N 2 − N 1 = N ,N_2-N_1=N ,N