文章目录
1. 离散时间信号的傅里叶变换(DTFT)
1.1 序列的离散时间傅里叶变换
X
(
e
j
ω
)
=
F
[
x
(
n
)
]
=
∑
n
=
−
∞
∞
x
(
n
)
e
−
j
ω
n
X(e^{j\omega})=F[x(n)]=\sum_{n=-\infty}^\infty x(n)e^{-j\omega n}
X(ejω)=F[x(n)]=n=−∞∑∞x(n)e−jωn
DTFT成立的充要条件式x(n)满足绝对可和
∑
n
=
−
∞
∞
∣
x
(
n
)
∣
<
∞
\sum_{n=-\infty}^\infty |x(n)|<\infty
∑n=−∞∞∣x(n)∣<∞。
X
(
e
j
ω
)
X(e^{j\omega})
X(ejω)有两种表达方式,实部虚部和幅度谱相位谱
- DTFT的反变换为IDTFT x ( n ) = F − 1 [ X ( e j ω ) ] = 1 2 π ∫ − π π X ( e j ω ) e j ω n d ω x(n)=F^{-1}[X(e^{j\omega})]=\frac{1}{2\pi}\int_{-\pi}^\pi X(e^{j\omega})e^{j\omega n}d\omega x(n)=F−1[X(ejω)]=2π1∫−ππX(ejω)ejωndω
时域 | 频域 |
---|---|
离散 | 连续 |
实值/复值 | 复值 |
加和 | 积分 |
− ∞ < n < + ∞ -\infty<n<+\infty −∞<n<+∞ | − π < ω < + π -\pi<\omega<+\pi −π<ω<+π |
1.2 序列的离散时间傅里叶变换性质
- 周期性:周期是 2 π 2\pi 2π,因此一般只分析 − π < ω < π -\pi<\omega<\pi −π<ω<π。信号的直流和低频集中在 ω = 0 \omega=0 ω=0和 ω = 2 π \omega = 2\pi ω=2π附近,信号的最高频率集中在 π \pi π附近
- 线性
- 时移和频移:设 X ( e j ω ) = D T F T [ x ( n ) ] X(e^{j\omega})=DTFT[x(n)] X(ejω)=DTFT[x(n)],则 D T F T [ x ( n − n 0 ) ] = e − j ω n 0 X ( e j ω ) DTFT[x(n-n_0)]=e^{-j\omega n_0}X(e^{j\omega}) DTFT[x(n−n0)]=e−jωn0X(ejω) D T F T [ e j ω 0 n x ( n ) ] = X ( e j ( ω − ω 0 ) ) DTFT[e^{j\omega_0n}x(n)]=X(e^{j(\omega-\omega_0)}) DTFT[ejω0nx(n)]=X(ej(ω−ω0))
- 序列乘以n(频域微分): D T F T [ n x ( n ) ] = j d X ( e j ω ) d ω DTFT[nx(n)]=j\frac{dX(e^{j\omega})}{d\omega} DTFT[nx(n)]=jdωdX(ejω)
- 共轭序列:
D
T
F
T
[
x
∗
(
n
)
]
=
X
∗
(
e
−
j
ω
)
DTFT[x^*(n)]=X^*(e^{-j\omega})
DTFT[x∗(n)]=X∗(e−jω)
D T F T [ x ∗ ( − n ) ] = X ∗ ( e j ω ) DTFT[x^*(-n)]=X^*(e^{j\omega}) DTFT[x∗(−n)]=X∗(ejω) - DTFT的对称性
- 共轭对称序列: x e ( n ) = x e ∗ ( − n ) x_e(n)=x^*_e(-n) xe(n)=xe∗(−n),实部是偶函数,虚部是奇函数
- 共轭反对称序列: x e ( n ) = − x e ∗ ( − n ) x_e(n)=-x^*_e(-n) xe(n)=−xe∗(−n),实部是奇函数,虚部是偶函数
- 对于一般序列来说,可以用共轭对称序列与共轭反对称序列之和表示 x ( n ) = x e ( n ) + x o ( n ) , x e ( n ) = 1 2 [ x ( n ) + x ∗ ( − n ) ] x(n)=x_e(n)+x_o(n),x_e(n)=\frac{1}{2}[x(n)+x^*(-n)] x(n)=xe(n)+xo(n),xe(n)=21[x(n)+x∗(−n)] x o ( n ) = 1 2 [ x ( n ) − x ∗ ( − n ) ] x_o(n)=\frac{1}{2}[x(n)-x^*(-n)] xo(n)=21[x(n)−x∗(−n)]频域函数 X ( e j ω ) X(e^{j\omega}) X(ejω)也有一样的结论。
- 序列分成实部和虚部两部分,实部的DTFT具有共轭对称性,虚部乘j一起对应的DTFT有反对称性
- 将序列分为共轭对称部分 x e ( n ) x_e(n) xe(n)和共轭反对称部分 x o ( n ) x_o(n) xo(n), x ( n ) = x e ( n ) + x o ( n ) x(n)=x_e(n)+x_o(n) x(n)=xe(n)+xo(n),分别DTFT, D T F T [ x e ( n ) ] = X R ( e j ω ) DTFT[x_e(n)]=X_R(e^{j\omega}) DTFT[xe(n)]=XR(ejω) D T F T [ x 0 ( n ) ] = j X I ( e j ω ) DTFT[x_0(n)]=jX_I(e^{j\omega}) DTFT[x0(n)]=jXI(ejω)
D T F T [ x e ( n ) ] = X R ( e j ω ) DTFT[x_e(n)]=X_R(e^{j\omega}) DTFT[xe(n)]=XR(ejω) | D T F T [ x r ( n ) ] = X e ( e j ω ) DTFT[x_r(n)]=X_e(e^{j\omega}) DTFT[xr(n)]=Xe(ejω) |
---|---|
D T F T [ x 0 ( n ) ] = j X I ( e j ω ) DTFT[x_0(n)]=jX_I(e^{j\omega}) DTFT[x0(n)]=jXI(ejω) | D T F T [ j x i ( n ) ] = X o ( e j ω ) DTFT[jx_i(n)]=X_o(e^{j\omega}) DTFT[jxi(n)]=Xo(ejω) |
一个域的实部对应另一个域的共轭对称分量,一个域的虚部对应另一个域的共轭反对称分量
- 设h(n)是实因果序列,DTFT的共轭反对称部分为零,实部对应的是共轭对称分量 H e ( e j ω ) H_e(e^{j\omega}) He(ejω)。实序列的DTFT的实部是偶函数,虚部是奇函数。共轭对称部分 H e ( e j ω ) H_e(e^{j\omega}) He(ejω)模平方 ∣ H e ( e j ω ) ∣ 2 |H_e(e^{j\omega})|^2 ∣He(ejω)∣2是 ω \omega ω的偶函数,相位 a r g [ H e ( e j ω ) ] arg[H_e(e^{j\omega})] arg[He(ejω)]是 ω \omega ω的奇函数
- 时域卷积定理:设 y ( n ) = x ( n ) ∗ h ( n ) y(n)=x(n)^*h(n) y(n)=x(n)∗h(n)则 Y ( e j ω ) = X ( x j ω ) ⋅ H ( e j ω ) Y(e^{j\omega})=X(x^{j\omega})\cdot H(e^{j\omega}) Y(ejω)=X(xjω)⋅H(ejω)输出信号也可以这样求
- 频域卷积定理:假设 X ( e j ω ) = D T F T [ x ( n ) ] , H ( e j ω ) = D T F T [ h ( n ) ] , y ( n ) = x ( n ) h ( n ) X(e^{j\omega})=DTFT[x(n)],H(e^{j\omega})=DTFT[h(n)],y(n)=x(n)h(n) X(ejω)=DTFT[x(n)],H(ejω)=DTFT[h(n)],y(n)=x(n)h(n)z,则 Y ( e j ω ) = 1 2 π X ( e j ω ) ∗ H ( e j ω ) = 1 2 π ∫ − π π H ( e j θ ) H ( e j ( ω − θ ) ) d θ Y(e^{j\omega})=\frac{1}{2\pi}X(e^{j\omega})*H(e^{j\omega})=\frac{1}{2\pi}\int_{-\pi}^\pi H(e^{j\theta})H(e^{j(\omega-\theta)})d\theta Y(ejω)=2π1X(ejω)∗H(ejω)=2π1∫−ππH(ejθ)H(ej(ω−θ))dθ
- 帕斯瓦尔定理:信号时域的总能量等于频域的总能量:能量守恒
1.3 基本序列的离散时间傅里叶变换
- 单位脉冲序列的DTFT: D T F T [ δ ( n ) ] = ∑ n = − ∞ ∞ δ ( n ) e − j ω n = 1 DTFT[\delta(n)]=\sum_{n=-\infty}^{\infty}\delta(n)e^{-j\omega n}=1 DTFT[δ(n)]=n=−∞∑∞δ(n)e−jωn=1
- 常数1的DTFT:
X
(
e
j
ω
)
=
2
π
∑
l
=
−
∞
∞
δ
(
ω
−
2
π
l
)
X(e^{j\omega})=2\pi\sum_{l=-\infty}^{\infty}\delta(\omega-2\pi l)
X(ejω)=2πl=−∞∑∞δ(ω−2πl)其频谱函数是在
ω
=
2
π
l
\omega=2\pi l
ω=2πl处的单位冲激函数,强度为
2
π
2\pi
2π
2. 离散时间信号的Z域分析
解决傅里叶变换存在的问题,实用价值的信号 u ( n ) , n u ( n ) u(n),nu(n) u(n),nu(n)无法通过DTFT计算频域信号;由初始条件或输入变化引起的系统瞬态响应不能通过DTFT计算。
2.1 定义
X
(
z
)
=
∑
n
=
−
∞
∞
x
(
n
)
z
−
n
X(z)=\sum_{n=-\infty}^{\infty}x(n)z^{-n}
X(z)=n=−∞∑∞x(n)z−n
z是一个复变量,它所在的复平面称为z平面,
−
∞
<
n
<
+
∞
-\infty<n<+\infty
−∞<n<+∞,双边Z变换。单边Z变换的n从0到
+
∞
+\infty
+∞。因果序列的单双边变换是一样的。Z 变换的条件是等式右边收敛,既级数绝对可和,z取值的域叫做收敛域,在二维坐标上是一个环形。
常用的z变换是一个有理函数
X
(
z
)
=
P
(
z
)
Q
(
z
)
X(z)=\frac{P(z)}{Q(z)}
X(z)=Q(z)P(z),P(z)的根是X(z)的零点,Q(z)的根是X(z)的极点,收敛域总是用极点限定边界。
对比DTFT和z变换的公式可得 X ( e j ω ) = X ( z ) ∣ z = e j ω , z = e j ω X(e^{j\omega})=X(z)|_{z=e^{j\omega}},z=e^{j\omega} X(ejω)=X(z)∣z=ejω,z=ejω表示在z平面上 r = 1 r=1 r=1的圆。如果已知序列的z变换,可以用关系式求出DTFT,条件为收敛域包含单位圆。
2.2 收敛域的特性
- 由于收敛域是根据幅度 ∣ z ∣ |z| ∣z∣来确定的,z是半径
- 收敛域不能包含极点
- 有理的 X ( z ) X(z) X(z),至少有一个极点在收敛域边界上
- 收敛域是连续的
- 有限长序列 x ( n ) = { x ( n ) , n 1 ≤ n ≤ n 2 0 , n ,其他 x(n)= \begin{cases}x(n),n_1\leq n\leq n_2\\0,n,其他\\\end{cases} x(n)={x(n),n1≤n≤n20,n,其他的z变换为 X ( z ) = ∑ n = n 1 n 2 x ( n ) z − n X(z)=\sum_{n=n_1}^{n_2}x(n)z^{-n} X(z)=∑n=n1n2x(n)z−n。设它为有界序列,有限项求和,除了 0 , ∞ 0,\infty 0,∞两点是否收敛和 n 1 , n 2 n_1,n_2 n1,n2取值情况有关外,整个z平面均收敛。 { n 1 < 0 , n 2 ≤ 0 , 0 ≤ ∣ z ∣ < 0 n 1 < 0 , n 2 > 0 , 0 < ∣ z ∣ < ∞ n 1 ≥ 0 , n 2 > 0 , 0 < ∣ z ∣ ≤ ∞ \begin{cases}n_1<0,n_2\leq0 ,0\leq |z|<0\\n_1<0,n_2>0,0<|z|<\infty\\n_1\geq0,n_2>0,0<|z|\leq\infty\\\end{cases} ⎩ ⎨ ⎧n1<0,n2≤0,0≤∣z∣<0n1<0,n2>0,0<∣z∣<∞n1≥0,n2>0,0<∣z∣≤∞
- 右序列:右序列是在 n ≥ n 1 n\geq n_1 n≥n1时序列值不为零 X ( z ) = ∑ n = n 1 ∞ x ( n ) z − n = ∑ n = n − 1 − 1 x ( n ) z − n + ∑ n = 0 ∞ x ( n ) z − n X(z)=\sum_{n=n_1}^{\infty}x(n)z^{-n}=\sum_{n=n-1}^{-1}x(n)z^{-n}+\sum_{n=0}^{\infty}x(n)z^{-n} X(z)=n=n1∑∞x(n)z−n=n=n−1∑−1x(n)z−n+n=0∑∞x(n)z−n第一项为有限长序列,第二项为因果序列。设 n 1 ≤ − 1 n_1\leq-1 n1≤−1,其收敛域为 0 ≤ ∣ z ∣ ≤ ∞ 0\leq|z|\leq\infty 0≤∣z∣≤∞,第二项的收敛域 R − x < ∣ z ∣ ≤ ∞ R_{-x}<|z|\leq\infty R−x<∣z∣≤∞,R是收敛半径,所以整体是收敛半径为 R − x < ∣ z ∣ ≤ ∞ R_{-x}<|z|\leq\infty R−x<∣z∣≤∞
- 左序列:右序列是在 n ≤ n 1 n\leq n_1 n≤n1时序列值不为零 X ( z ) = ∑ n = − ∞ n 2 x ( n ) z − n X(z)=\sum_{n=-\infty}^{n_2}x(n)z^{-n} X(z)=n=−∞∑n2x(n)z−n当 n 2 < 0 , z = 0 n_2<0,z=0 n2<0,z=0处收敛, z = ∞ z=\infty z=∞处不收敛,其收敛域是某一圆的圆内,收敛域 0 ≤ ∣ z ∣ < R + x 0\leq|z|<R_{+x} 0≤∣z∣<R+x,如果 n 2 > 0 n_2>0 n2>0,则收敛域为 0 < ∣ z ∣ < R + x 0<|z|<R_{+x} 0<∣z∣<R+x
- 双边序列:相当于左序列和右序列的和,收敛域是公共部分
2.3 性质和定理
- 线性:满足叠加原理,收敛域为公共收敛域
- 移位:若 X ( z ) = Z T [ x ( n ) ] , R − x < ∣ z ∣ < R + x X(z)=ZT[x(n)],R_{-x}<|z|<R_{+x} X(z)=ZT[x(n)],R−x<∣z∣<R+x则 Z T [ x ( n − n 0 ) ] = z − n 0 X ( z ) , R − x < ∣ z ∣ < R + x ZT[x(n-n_0)]=z^{-n_0}X(z),R_{-x}<|z|<R_{+x} ZT[x(n−n0)]=z−n0X(z),R−x<∣z∣<R+x
- 乘以指数序列:设 X ( z ) = Z T [ x ( n ) ] , y ( n ) = a n x ( n ) , R − x < ∣ z ∣ < R + x , a 是常数 X(z)=ZT[x(n)],y(n)=a^nx(n),R_{-x}<|z|<R_{+x},a是常数 X(z)=ZT[x(n)],y(n)=anx(n),R−x<∣z∣<R+x,a是常数,则 Y ( z ) = Z T [ a n x ( n ) ] = X ( a − 1 z ) , ∣ a ∣ R − x < ∣ z ∣ < ∣ a ∣ R + x Y(z)=ZT[a^nx(n)]=X(a^{-1}z),|a|R_{-x}<|z|<|a|R_{+x} Y(z)=ZT[anx(n)]=X(a−1z),∣a∣R−x<∣z∣<∣a∣R+x
- 序列乘以n:设 X ( z ) = Z T [ x ( n ) ] , R − x < ∣ z ∣ < R + x X(z)=ZT[x(n)],R_{-x}<|z|<R_{+x} X(z)=ZT[x(n)],R−x<∣z∣<R+x,则 Z T [ n ( x ) ] = − z d X ( z ) d z ZT[n(x)]=-z\frac{dX(z)}{dz} ZT[n(x)]=−zdzdX(z)
- 复共轭序列:设 X ( z ) = Z T [ x ( n ) ] , R − x < ∣ z ∣ < R + x X(z)=ZT[x(n)],R_{-x}<|z|<R_{+x} X(z)=ZT[x(n)],R−x<∣z∣<R+x,则 X ∗ ( Z ∗ ) = Z T [ x ∗ ( n ) ] , R − x < ∣ z ∣ < R + x X^*(Z^*)=ZT[x^*(n)],R_{-x}<|z|<R_{+x} X∗(Z∗)=ZT[x∗(n)],R−x<∣z∣<R+x
- 序列卷积定理:设 ω ( n ) = x ( n ) ∗ y ( n ) \omega(n)=x(n)*y(n) ω(n)=x(n)∗y(n) X ( z ) = Z T [ x ( n ) ] , R − x < ∣ z ∣ < R + x X(z)=ZT[x(n)],R_{-x}<|z|<R_{+x} X(z)=ZT[x(n)],R−x<∣z∣<R+x Y ( z ) = Z T [ y ( n ) ] , R − y < ∣ z ∣ < R + y Y(z)=ZT[y(n)],R_{-y}<|z|<R_{+y} Y(z)=ZT[y(n)],R−y<∣z∣<R+y则 Ω ( z ) = Z T [ ω ( n ) ] = X ( z ) ∗ Y ( z ) , R − ω < ∣ z ∣ < R + ω \Omega(z)=ZT[\omega(n)]=X(z)*Y(z),R_{-\omega}<|z|<R_{+\omega} Ω(z)=ZT[ω(n)]=X(z)∗Y(z),R−ω<∣z∣<R+ω R + ω = m i n [ R + x , R + y ] , R − ω = m i n [ R − x , R − y ] R_{+\omega}=min[R_{+x},R_{+y}],R_{-\omega}=min[R_{-x},R_{-y}] R+ω=min[R+x,R+y],R−ω=min[R−x,R−y]
- 初值定理:设x(n)是因果序列, X ( z ) = Z T [ x ( n ) ] , x ( 0 ) = lim z → ∞ X ( z ) X(z)=ZT[x(n)],x(0)=\displaystyle\lim_{z\to\infty}X(z) X(z)=ZT[x(n)],x(0)=z→∞limX(z)
- 复卷积定理:设 ω ( n ) = x ( n ) ∗ y ( n ) \omega(n)=x(n)*y(n) ω(n)=x(n)∗y(n) X ( z ) = Z T [ x ( n ) ] , R − x < ∣ z ∣ < R + x X(z)=ZT[x(n)],R_{-x}<|z|<R_{+x} X(z)=ZT[x(n)],R−x<∣z∣<R+x Y ( z ) = Z T [ y ( n ) ] , R − y < ∣ z ∣ < R + y Y(z)=ZT[y(n)],R_{-y}<|z|<R_{+y} Y(z)=ZT[y(n)],R−y<∣z∣<R+y则 Ω ( z ) = 1 2 π j ∮ c X ( v ) Y ( z v ) d v v \Omega(z)=\frac{1}{2\pi j}\oint _{c}X(v)Y(\frac{z}{v})\frac{dv}{v} Ω(z)=2πj1∮cX(v)Y(vz)vdvW(z)的收敛域为 R − x R − y < ∣ z ∣ < R + x R + y R_{-x}R_{-y}<|z|<R_{+x}R_{+y} R−xR−y<∣z∣<R+xR+y,在v平面上,被积函数的收敛域为 m a x ( R − x , ∣ z ∣ R + y ) < ∣ v ∣ < m i n ( R + x , ∣ z ∣ R − y ) max(R_{-x},\frac{|z|}{R_{+y}})<|v|<min(R_{+x},\frac{|z|}{R_{-y}}) max(R−x,R+y∣z∣)<∣v∣<min(R+x,R−y∣z∣)
- 终值定理:若x(n)是因果序列,其z变换的极点,除可以有一个一阶极点在z=1上,其他极点均在单位圆内,则 lim n → ∞ x ( n ) = lim z → 1 ( z − 1 ) X ( z ) \displaystyle\lim_{n\to\infty}x(n)=\displaystyle\lim_{z\to1}(z-1)X(z) n→∞limx(n)=z→1lim(z−1)X(z)
- 帕斯瓦尔定理:既满足能量守恒, X ( z ) = Z T [ x ( n ) ] , R − x < ∣ z ∣ < R + x X(z)=ZT[x(n)],R_{-x}<|z|<R_{+x} X(z)=ZT[x(n)],R−x<∣z∣<R+x Y ( z ) = Z T [ y ( n ) ] , R − y < ∣ z ∣ < R + y Y(z)=ZT[y(n)],R_{-y}<|z|<R_{+y} Y(z)=ZT[y(n)],R−y<∣z∣<R+y且满足 R − x R − y < 1 R_{-x}R_{-y}<1 R−xR−y<1,那么 ∑ n = − ∞ ∞ x ( n ) y ∗ ( n ) = 1 2 π j ∮ c X ( v ) Y ∗ ( 1 v ∗ ) v − 1 d v \sum_{n=-\infty}^{\infty}x(n)y^*(n)=\frac{1}{2\pi j}\oint_{c}X(v)Y*(\frac{1}{v*})v^{-1}dv n=−∞∑∞x(n)y∗(n)=2πj1∮cX(v)Y∗(v∗1)v−1dv在v平面上,c的收敛域为 m a x ( R − x , 1 R + y ) < ∣ v ∣ < m i n ( R + x , 1 R − y ) max(R_{-x},\frac{1}{R_{+y}})<|v|<min(R_{+x},\frac{1}{R_{-y}}) max(R−x,R+y1)<∣v∣<min(R+x,R−y1)
2.4 逆Z变换
已知序列的Z变换及其收敛域,求序列称为逆Z变换 x ( n ) = 1 2 π j ∮ c X ( z ) z n − 1 d z , c ∈ ( R − x , R + x ) x(n)=\frac{1}{2\pi j}\oint_cX(z)z^{n-1}dz,c\in(R_{-x},R_{+x}) x(n)=2πj1∮cX(z)zn−1dz,c∈(R−x,R+x)c是收敛域内的逆时针封闭曲线。
- 幂级数法(长除法)
根据定义将X(z)写成幂级数形式,级数的系数就是序列 - 部分分式展开
将X(z)展成一些简单的常用部分分式之和,通过查表求得各部分的逆变换 - 留数定理求逆z变换
若 X ( z ) z n − 1 X(z)z^{n-1} X(z)zn−1在闭合曲线c内的极点为 z k z_k zk则 x ( n ) = 1 2 π j ∮ c X ( z ) z n − 1 d z x(n)=\frac{1}{2\pi j}\oint_cX(z)z^{n-1}dz x(n)=2πj1∮cX(z)zn−1dz = ∑ k R e s [ X ( z ) z n − 1 , z k ] =\sum_k Res[X(z)z^{n-1},z_k] =k∑Res[X(z)zn−1,zk]第二个等式表示被积函数 X ( z ) z n − 1 X(z)z^{n-1} X(z)zn−1在极点 z = z k z=z_k z=zk的留数,逆Z变换则是c内所有极点的留数和。
如果 z k z_k zk是N阶极点,则 R e s [ X ( z ) z n − 1 , z k ] = 1 ( N − 1 ) ! d N − 1 d z N − 1 [ ( z − z k ) N X ( z ) z n − 1 ] ∣ z = z k Res[X(z)z^{n-1},z_k]=\frac{1}{(N-1)!}\frac{d^{N-1}}{dz^{N-1}}[(z-z_k)^NX(z)z^{n-1}]|_{z=z_k} Res[X(z)zn−1,zk]=(N−1)!1dzN−1dN−1[(z−zk)NX(z)zn−1]∣z=zk比较复杂,若果c内有多阶极点,可以根据留数辅助定理改求c外的所有极点留数之和。
设被积函数用F(z)表示,既 F ( z ) = X ( z ) z n − 1 F(z)=X(z)z^{n-1} F(z)=X(z)zn−1,它在z平面上有N个极点,在收敛域内的封闭曲线c将z平面上极点分成c内极点和c外极点,分别有 N 1 , N 2 N_1,N_2 N1,N2个,用 z 1 k , z 2 k z_{1k},z_{2k} z1k,z2k表示, N = N 1 + N 2 N=N_1+N_2 N=N1+N2,根据留数定理 ∑ k = 1 N 1 R e s [ F ( z ) , z 1 k ] = − ∑ k = 1 N 2 R e s [ F ( z ) , z 2 k ] \sum_{k=1}^{N_1}Res[F(z),z_1k]=-\sum_{k=1}^{N_2}Res[F(z),z_2k] k=1∑N1Res[F(z),z1k]=−k=1∑N2Res[F(z),z2k]成立条件是F(z)的分母阶次比分子阶次必须高二阶以上
3. 离散时间LTI系统的频域分析
3.1 差分方程的Z变换解
设N阶线性常系数差分方程为 ∑ i = 0 M b i x ( n − i ) = ∑ k = 1 N a k y ( n − k ) , a 0 = 1 \sum_{i=0}^Mb_ix(n-i)=\sum_{k=1}^Na_ky(n-k),a_0=1 i=0∑Mbix(n−i)=k=1∑Naky(n−k),a0=1系统的全响应由零输入响应和零状态响应叠加
- 零输入状态:采用单边Z变换来分析
- 零状态响应: x ( h ) ∗ h ( n ) x(h)^*h(n) x(h)∗h(n)
计算全响应:
- 对于N阶差分方程,必须知道N个初始条件
- 设x(n)是因果序列,所以单边z变换和双边z变换是相同的
- 求移位的单边z变换,设 Y ( z ) = ∑ n = 0 ∞ y ( n ) z − n Y(z)=\sum_{n=0}^{\infty}y(n)z^{-n} Y(z)=∑n=0∞y(n)z−n Z T [ y ( n − k ) u ( n ) ] ZT[y(n-k)u(n)] ZT[y(n−k)u(n)] = ∑ n = 0 ∞ y ( n − k ) z − n =\sum_{n=0}^{\infty}y(n-k)z^{-n} =n=0∑∞y(n−k)z−n = z − k ∑ n = 0 ∞ y ( n − k ) z − ( n − k ) =z^{-k}\sum_{n=0}^{\infty}y(n-k)z^{-(n-k)} =z−kn=0∑∞y(n−k)z−(n−k) = z − k ∑ l = − k ∞ y ( l ) z − l =z^{-k}\sum_{l=-k}^{\infty}y(l)z^{-l} =z−kl=−k∑∞y(l)z−l = z − k [ ∑ l = − k − 1 y ( l ) z − l + ∑ l = 0 ∞ y ( l ) z − l ] =z^{-k}[\sum_{l=-k}^{-1}y(l)z^{-l}+\sum_{l=0}^{\infty}y(l)z^{-l}] =z−k[l=−k∑−1y(l)z−l+l=0∑∞y(l)z−l] = z − k [ Y ( z ) + ∑ l = − k − 1 y ( l ) z − l ] =z^{-k}[Y(z)+\sum_{l=-k}^{-1}y(l)z^{-l}] =z−k[Y(z)+l=−k∑−1y(l)z−l]对比原式: ∑ k = 0 N a k z − k [ Y ( z ) + ∑ l = − k − 1 y ( l ) z − l ] = ∑ i = 0 M b i X ( z ) z − 1 , a 0 = 1 \sum_{k=0}^{N}a_kz^{-k}[Y(z)+\sum_{l=-k}^{-1}y(l)z^{-l}]=\sum_{i=0}^{M}b_iX(z)z^{-1},a_0=1 k=0∑Nakz−k[Y(z)+l=−k∑−1y(l)z−l]=i=0∑MbiX(z)z−1,a0=1 Y ( z ) = ∑ i = 0 M b i z − i ∑ k = 0 N a k z − k X ( z ) − ∑ k = 0 N a k z − k ∑ l = − k − 1 y ( l ) ∑ k = 0 N a k z − k , a 0 = 1 Y(z)=\frac{\sum_{i=0}^{M}b_iz^{-i}}{\sum_{k=0}^{N}a_kz^{-k}}X(z)-\frac{\sum_{k=0}^{N}a_kz^{-k}\sum_{l=-k}^{-1}y(l)}{\sum_{k=0}^{N}a_kz^{-k}},a_0=1 Y(z)=∑k=0Nakz−k∑i=0Mbiz−iX(z)−∑k=0Nakz−k∑k=0Nakz−k∑l=−k−1y(l),a0=1
3.2 LTI系统的频率响应
系统的频率特性,可以使用系统的频率响应和系统函数进行分析。当系统的输入是频率为
ω
\omega
ω的复数指数序列
e
j
ω
n
e^{j\omega n}
ejωn事时,系统零响应为
y
(
n
)
=
e
j
ω
n
∗
h
(
n
)
y(n)=e^{j\omega n *}h(n)
y(n)=ejωn∗h(n)
=
∑
m
=
−
∞
∞
h
(
m
)
e
j
ω
(
n
−
m
)
=
e
j
ω
n
H
(
e
j
ω
)
=\sum_{m=-\infty}^{\infty}h(m)e^{j\omega(n-m)}=e^{j\omega n}H(e^{j\omega})
=m=−∞∑∞h(m)ejω(n−m)=ejωnH(ejω)
H
(
e
j
ω
)
H(e^{j\omega})
H(ejω)是响应频率,这说明复指数序列
x
(
n
)
=
e
j
ω
n
x(n)=e^{j\omega n}
x(n)=ejωn,通过离散时间LTI系统之后,输出序列的频率不变,幅度取决于系统的频率响应在
ω
\omega
ω处的幅值。所以
H
(
e
j
ω
)
H(e^{j\omega})
H(ejω)表示系统对不同频率信号的增益。
对于任意序列,可以用复指数序列
e
j
ω
n
e^{j\omega n}
ejωn表示为
x
(
n
)
=
1
2
π
∫
−
π
π
X
(
e
j
ω
)
e
j
ω
n
d
ω
x(n)=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\omega})e^{j\omega n}d\omega
x(n)=2π1∫−ππX(ejω)ejωndω其零状态为:
y
(
n
)
=
T
[
x
(
n
)
]
y(n)=T[x(n)]
y(n)=T[x(n)]
=
1
2
π
∫
−
π
π
X
(
e
j
ω
)
T
[
e
j
ω
n
]
d
ω
=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\omega})T[e^{j\omega n}]d\omega
=2π1∫−ππX(ejω)T[ejωn]dω
=
1
2
π
∫
−
π
π
X
(
e
j
ω
)
H
(
e
j
ω
)
e
j
ω
n
d
ω
=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\omega})H(e^{j\omega })e^{j\omega n}d\omega
=2π1∫−ππX(ejω)H(ejω)ejωndω
时域卷积定理:
Y
(
e
j
ω
)
=
H
(
e
j
ω
)
X
(
e
j
ω
)
时域卷积定理:Y(e^{j\omega})=H(e^{j\omega})X(e^{j\omega})
时域卷积定理:Y(ejω)=H(ejω)X(ejω)一般情况下。离散时间LTI系统的频率响应
H
(
e
j
ω
)
H(e^{j\omega})
H(ejω)是复值函数,可用幅度和相位表示
H
(
e
j
ω
)
=
∣
H
(
e
j
ω
)
∣
e
j
ϕ
(
ω
)
H(e^{j\omega})=|H(e^{j\omega)}|e^{j\phi(\omega)}
H(ejω)=∣H(ejω)∣ejϕ(ω)
e
j
ϕ
(
ω
)
e^{j\phi(\omega)}
ejϕ(ω)是相频响应,当h(n)是实序列时,副频响应式偶函数,相频响应式奇函数
幅频响应:有选择性的保留有用的频率分量,而将其余分量衰减到近似为零,所以离散时间系统统称为滤波器。
相频响应:不是常数,意味着不同频率分量会有不同的时间延迟,引起相位失真
3.2 余弦型信号通过LTI系统的响应
设系统输入是频率为
ω
\omega
ω的余弦序列
x
(
n
)
=
A
c
o
s
(
ω
n
+
θ
)
x(n)=Acos(\omega n+\theta)
x(n)=Acos(ωn+θ)
=
A
2
[
e
j
(
ω
n
+
θ
)
+
e
−
j
(
ω
n
+
θ
)
]
=\frac{A}{2}[e^{j(\omega n+\theta)}+e^{-j(\omega n+\theta)}]
=2A[ej(ωn+θ)+e−j(ωn+θ)]根据复指数序列,通过离散时间LTI系统的响应,得到输出为
y
(
n
)
=
A
2
H
(
e
j
ω
)
[
e
j
(
ω
n
+
θ
)
+
e
−
j
(
ω
n
+
θ
)
]
y(n)=\frac{A}{2}H(e^{j\omega})[e^{j(\omega n+\theta)}+e^{-j(\omega n+\theta)}]
y(n)=2AH(ejω)[ej(ωn+θ)+e−j(ωn+θ)]若
h
(
n
)
h(n)
h(n)为实序列时,由DTFT的对称性
H
(
e
j
ω
)
=
H
∗
(
e
−
j
ω
)
H(e^{j\omega})=H^*(e^{-j\omega})
H(ejω)=H∗(e−jω)得
H
(
e
j
ω
)
=
[
H
(
e
j
ω
)
]
e
j
ϕ
(
ω
)
H(e^{j\omega})=[H(e^{j\omega})]e^{j\phi(\omega)}
H(ejω)=[H(ejω)]ejϕ(ω)
H
(
e
−
j
ω
)
=
∣
H
(
e
j
ω
)
∣
e
−
j
ϕ
(
−
ω
)
H(e^{-j\omega})=|H(e^{j\omega})|e^{-j\phi(-\omega)}
H(e−jω)=∣H(ejω)∣e−jϕ(−ω)代回得
y
(
n
)
=
A
∣
H
(
e
j
ω
)
∣
c
o
s
[
ω
n
+
ϕ
(
ω
)
+
θ
]
y(n)=A|H(e^{j\omega})|cos[\omega n+\phi(\omega)+\theta]
y(n)=A∣H(ejω)∣cos[ωn+ϕ(ω)+θ]既
y
(
n
)
=
A
∣
H
(
e
j
ω
)
∣
c
o
s
[
ω
(
n
+
ϕ
(
ω
)
ω
)
+
θ
]
y(n)=A|H(e^{j\omega})|cos[\omega (n+\frac{\phi(\omega)}{\omega})+\theta]
y(n)=A∣H(ejω)∣cos[ω(n+ωϕ(ω))+θ]
相位延迟:
τ
P
(
ω
)
=
−
ϕ
(
ω
)
ω
\tau_P(\omega)=-\frac{\phi(\omega)}{\omega}
τP(ω)=−ωϕ(ω),是
ω
\omega
ω的函数,则不同的频率分量延迟不同,因此会产生失真
3.3 稳态响应和暂态响应
如果输入序列x(n)是在
n
=
−
∞
n=-\infty
n=−∞时加上的,n时刻的y(n)是稳态解,其中暂态项都将消失。
如果输入序列x(n)是在
n
=
0
n=0
n=0时加上的,则系统的全响应中包含稳态解和暂态解,暂态解随时间的增长消失。考虑输入序列
x
(
n
)
=
e
j
ω
n
u
(
n
)
x(n)=e^{j\omega n}u(n)
x(n)=ejωnu(n),则系统的输出为
y
(
n
)
=
∑
m
=
−
∞
∞
h
(
m
)
e
j
ω
(
n
−
m
)
u
(
n
−
m
)
y(n)=\sum_{m=-\infty}^{\infty}h(m)e^{j\omega(n-m)}u(n-m)
y(n)=m=−∞∑∞h(m)ejω(n−m)u(n−m)
=
[
∑
m
=
−
∞
n
h
(
m
)
e
−
j
ω
m
]
e
j
ω
m
=[\sum_{m=-\infty}^{n}h(m)e^{-j\omega m}]e^{j\omega m}
=[m=−∞∑nh(m)e−jωm]ejωm
=
[
∑
m
=
−
∞
n
h
(
m
)
e
−
j
ω
m
]
e
j
ω
m
−
[
∑
m
=
n
+
1
n
h
(
m
)
e
−
j
ω
m
]
e
j
ω
m
=[\sum_{m=-\infty}^{n}h(m)e^{-j\omega m}]e^{j\omega m}-[\sum_{m=n+1}^{n}h(m)e^{-j\omega m}]e^{j\omega m}
=[m=−∞∑nh(m)e−jωm]ejωm−[m=n+1∑nh(m)e−jωm]ejωm减去的是补上的项
=
H
(
e
j
ω
)
e
j
ω
n
−
[
∑
m
=
n
+
1
∞
h
(
m
)
e
−
j
ω
m
]
e
j
ω
n
=H(e^{j\omega})e^{j\omega n}-[\sum_{m=n+1}^{\infty}h(m)e^{-j\omega m}]e^{j\omega n}
=H(ejω)ejωn−[m=n+1∑∞h(m)e−jωm]ejωn
前一项是稳态响应,后项是暂态响应,对于稳定系统h(n)绝对可和
lim
n
→
∞
∣
y
t
r
(
n
)
∣
=
∣
∑
m
=
n
+
1
∞
h
(
m
)
e
−
j
ω
m
∣
\lim_{n\to\ \infty}|y_{tr}(n)|=|\sum_{m=n+1}^{\infty}h(m)e^{-j\omega m}|
n→ ∞lim∣ytr(n)∣=∣m=n+1∑∞h(m)e−jωm∣
≤
∣
∑
m
=
n
+
1
∞
h
(
m
)
∣
=
0
\leq|\sum_{m=n+1}^{\infty}h(m)|=0
≤∣m=n+1∑∞h(m)∣=0
h(n)是长度为N的FIR系统的单位脉冲响应,h(n)只在[0,N-1]区间有非零值,在n>N-1时,暂态响应为零,系统达到稳定。
4. 离散时间LTI系统的Z域分析
4.1 LTI系统的系统函数
设系统初始状态为零,输入为单位脉冲序列 δ ( n ) \delta(n) δ(n),输出端的响应称为系统的单位脉冲响应 h ( n ) h(n) h(n)。对它进行离散时间傅里叶变换得到 H ( e j ω ) H(e^{j\omega}) H(ejω),称为系统的传输函数,它表征系统的实频域特性;对它进行Z变换得到 H ( z ) H(z) H(z),称为系统的系统函数,它表征了系统的复频域特性 y ( n ) = x ( n ) ∗ h ( n ) y(n)=x(n)^*h(n) y(n)=x(n)∗h(n) ⇒ Y ( z ) = X ( z ) H ( z ) \Rightarrow Y(z)=X(z)H(z) ⇒Y(z)=X(z)H(z) H ( z ) = Z T [ h ( n ) ] = Y ( z ) X ( z ) H(z)=ZT[h(n)]=\frac{Y(z)}{X(z)} H(z)=ZT[h(n)]=X(z)Y(z)如多H(z)的收敛域包含单位圆|z|=1,则 H ( e j ω ) = H ( z ) ∣ z = e j ω H(e^{j\omega})=H(z)|_{z=e^{j\omega}} H(ejω)=H(z)∣z=ejω
4.2 LTI系统的差分方程
设N阶线性常系差方程为 ∑ i = 0 M b i x ( n − i ) = ∑ k = 1 N a k y ( n − k ) , a 0 = 1 \sum_{i=0}^Mb_ix(n-i)=\sum_{k=1}^Na_ky(n-k),a_0=1 i=0∑Mbix(n−i)=k=1∑Naky(n−k),a0=1双边Z变换 H ( z ) = Y ( z ) X ( z ) = ∑ i = 0 M b i z − i 1 + ∑ k = 0 N a k z − k H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{i=0}^{M}b_iz^{-i}}{1+\sum_{k=0}^{N}a_kz^{-k}} H(z)=X(z)Y(z)=1+∑k=0Nakz−k∑i=0Mbiz−i = b 0 z N − M ∏ i = 1 M ( z − z i ) ∏ k = 1 N ( z − p k ) =b_0z^{N-M}\frac{\prod_{i=1}^{M}(z-z_i)}{\prod_{k=1}^{N}(z-p_k)} =b0zN−M∏k=1N(z−pk)∏i=1M(z−zi) z i z_i zi是零点, p k p_k pk是极点
4.3 系统函数的极点分布和系统因果性稳定性的关系
- 因果(可实现)系统:其单位脉冲响应h(n)一定满足当n<0时,h(n)是右边序列,其收敛域在某个圆内,包含 ∞ \infty ∞点。因为收敛域不包含极点,所以 ∞ \infty ∞不是极点。
- 系统稳定:要求 ∑ n = − ∞ ∞ ∣ h ( n ) ∣ < ∞ \sum_{n=-\infty}^{\infty}|h(n)|<\infty ∑n=−∞∞∣h(n)∣<∞,既h(n)绝对可和,h(n)的DTFT存在。DTFT存在时,Z变换的收敛域包含单位圆。如果系统因果且稳定,收敛域包含 ∞ \infty ∞和单位圆,那么收敛域可表示为 r < ∣ z ∣ ≤ ∞ , 0 < r < 1 r<|z|\leq \infty,0<r<1 r<∣z∣≤∞,0<r<1
因果稳定系统的系统函数所有极点一定分布在单位圆内。
4.4 零极点分布对系统频率响应特性的影响
H ( z ) = Y ( z ) X ( z ) = ∑ i = 0 M b i z − i ∑ k = 0 N a k z − k H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{i=0}^{M}b_iz^{-i}}{\sum_{k=0}^{N}a_kz^{-k}} H(z)=X(z)Y(z)=∑k=0Nakz−k∑i=0Mbiz−i = A ∏ i = 1 M ( 1 − c i z − 1 ) ∏ k = 1 N ( 1 − d k z − 1 ) =A\frac{\prod_{i=1}^{M}(1-c_iz^{-1})}{\prod_{k=1}^{N}(1-d_kz^{-1})} =A∏k=1N(1−dkz−1)∏i=1M(1−ciz−1) A = b 0 a 0 , c i 是零点, d k 是极点 A=\frac{b_0}{a_0},c_i是零点,d_k是极点 A=a0b0,ci是零点,dk是极点
- A参数影响传输函数的幅度大小
- 零点和极点影响系统特性
上下同时乘
z
N
+
M
z^{N+M}
zN+M
H
(
z
)
=
A
z
N
−
M
∏
i
=
1
M
(
z
−
z
i
)
∏
k
=
1
N
(
z
−
p
k
)
H(z)=Az^{N-M}\frac{\prod_{i=1}^{M}(z-z_i)}{\prod_{k=1}^{N}(z-p_k)}
H(z)=AzN−M∏k=1N(z−pk)∏i=1M(z−zi)设系统稳定,既收敛域包含单位圆,其DTFT、存在,将
z
=
e
j
ω
z=e^{j\omega}
z=ejω代入
H
(
e
j
ω
)
=
A
e
j
ω
(
N
−
M
)
∏
i
=
1
M
(
e
j
ω
−
z
i
)
∏
k
=
1
N
(
e
j
ω
−
p
k
)
H(e^{j\omega})=Ae^{j\omega (N-M)}\frac{\prod_{i=1}^{M}(e^{j\omega}-z_i)}{\prod_{k=1}^{N}(e^{j\omega}-p_k)}
H(ejω)=Aejω(N−M)∏k=1N(ejω−pk)∏i=1M(ejω−zi)设N=M,则
H
(
e
j
ω
)
=
A
∏
i
=
1
M
(
e
j
ω
−
z
i
)
∏
k
=
1
N
(
e
j
ω
−
p
k
)
H(e^{j\omega})=A\frac{\prod_{i=1}^{M}(e^{j\omega}-z_i)}{\prod_{k=1}^{N}(e^{j\omega}-p_k)}
H(ejω)=A∏k=1N(ejω−pk)∏i=1M(ejω−zi)在z平面上,
e
j
ω
−
z
i
e^{j\omega}-z_i
ejω−zi用
c
r
B
→
\overrightarrow {c_rB}
crB表示,
e
j
ω
−
p
k
e^{j\omega}-p_k
ejω−pk用
d
r
B
→
\overrightarrow {d_rB}
drB表示
c r B → , d r B → \overrightarrow {c_rB},\overrightarrow {d_rB} crB,drB分别是零点矢量和极点矢量,极坐标表示为 c r B → = c r B e j α r \overrightarrow {c_rB}=c_rBe^{j\alpha_r} crB=crBejαr d r B → = d r B e j β r \overrightarrow {d_rB}=d_rBe^{j\beta_r} drB=drBejβr代回原式 H ( e j ω ) = A ∏ i = 1 M c r B → ∏ k = 1 N d r B → = ∣ H ( e j ω ) ∣ e j ϕ ( ω ) H(e^{j\omega})=A\frac{\prod_{i=1}^{M}\overrightarrow {c_rB}}{\prod_{k=1}^{N}\overrightarrow {d_rB}}=|H(e^{j\omega})|e^{j\phi (\omega)} H(ejω)=A∏k=1NdrB∏i=1McrB=∣H(ejω)∣ejϕ(ω) ∣ H ( e j ω ) ∣ = A ∏ i = 1 M c r B → ∏ k = 1 N d r B → |H(e^{j\omega})|=A\frac{\prod_{i=1}^{M}\overrightarrow {c_rB}}{\prod_{k=1}^{N}\overrightarrow {d_rB}} ∣H(ejω)∣=A∏k=1NdrB∏i=1McrB ψ ( ω ) = ∑ r = 1 N α r − ∑ r = 1 N β r \psi(\omega)=\sum_{r=1}^{N}\alpha_r-\sum_{r=1}^{N}\beta_r ψ(ω)=r=1∑Nαr−r=1∑Nβr上面两式确定系统的传输特性或信号的频率特性。当频率 ω \omega ω从0变成 2 π 2\pi 2π,这些向量的终点B从单位圆逆时针旋转一圈。