研零小白信号处理学习(三):离散时间信号和系统的频域分析

1. 离散时间信号的傅里叶变换(DTFT)

1.1 序列的离散时间傅里叶变换

X ( e j ω ) = F [ x ( n ) ] = ∑ n = − ∞ ∞ x ( n ) e − j ω n X(e^{j\omega})=F[x(n)]=\sum_{n=-\infty}^\infty x(n)e^{-j\omega n} X(e)=F[x(n)]=n=x(n)ejωn
DTFT成立的充要条件式x(n)满足绝对可和 ∑ n = − ∞ ∞ ∣ x ( n ) ∣ < ∞ \sum_{n=-\infty}^\infty |x(n)|<\infty n=x(n)< X ( e j ω ) X(e^{j\omega}) X(e)有两种表达方式,实部虚部和幅度谱相位谱

  • DTFT的反变换为IDTFT x ( n ) = F − 1 [ X ( e j ω ) ] = 1 2 π ∫ − π π X ( e j ω ) e j ω n d ω x(n)=F^{-1}[X(e^{j\omega})]=\frac{1}{2\pi}\int_{-\pi}^\pi X(e^{j\omega})e^{j\omega n}d\omega x(n)=F1[X(e)]=2π1ππX(e)ejωndω
时域 频域
离散 连续
实值/复值 复值
加和 积分
− ∞ < n < + ∞ -\infty<n<+\infty <n<+ − π < ω < + π -\pi<\omega<+\pi π<ω<+π

1.2 序列的离散时间傅里叶变换性质

  • 周期性:周期是 2 π 2\pi 2π,因此一般只分析 − π < ω < π -\pi<\omega<\pi π<ω<π。信号的直流和低频集中在 ω = 0 \omega=0 ω=0 ω = 2 π \omega = 2\pi ω=2π附近,信号的最高频率集中在 π \pi π附近
  • 线性
  • 时移和频移:设 X ( e j ω ) = D T F T [ x ( n ) ] X(e^{j\omega})=DTFT[x(n)] X(e)=DTFT[x(n)],则 D T F T [ x ( n − n 0 ) ] = e − j ω n 0 X ( e j ω ) DTFT[x(n-n_0)]=e^{-j\omega n_0}X(e^{j\omega}) DTFT[x(nn0)]=en0X(e) D T F T [ e j ω 0 n x ( n ) ] = X ( e j ( ω − ω 0 ) ) DTFT[e^{j\omega_0n}x(n)]=X(e^{j(\omega-\omega_0)}) DTFT[ejω0nx(n)]=X(ej(ωω0))
  • 序列乘以n(频域微分): D T F T [ n x ( n ) ] = j d X ( e j ω ) d ω DTFT[nx(n)]=j\frac{dX(e^{j\omega})}{d\omega} DTFT[nx(n)]=jdωdX(e)
  • 共轭序列: D T F T [ x ∗ ( n ) ] = X ∗ ( e − j ω ) DTFT[x^*(n)]=X^*(e^{-j\omega}) DTFT[x(n)]=X(e)
    D T F T [ x ∗ ( − n ) ] = X ∗ ( e j ω ) DTFT[x^*(-n)]=X^*(e^{j\omega}) DTFT[x(n)]=X(e)
  • DTFT的对称性
    • 共轭对称序列: x e ( n ) = x e ∗ ( − n ) x_e(n)=x^*_e(-n) xe(n)=xe(n),实部是偶函数,虚部是奇函数
    • 共轭反对称序列: x e ( n ) = − x e ∗ ( − n ) x_e(n)=-x^*_e(-n) xe(n)=xe(n),实部是奇函数,虚部是偶函数
    • 对于一般序列来说,可以用共轭对称序列与共轭反对称序列之和表示 x ( n ) = x e ( n ) + x o ( n ) , x e ( n ) = 1 2 [ x ( n ) + x ∗ ( − n ) ] x(n)=x_e(n)+x_o(n),x_e(n)=\frac{1}{2}[x(n)+x^*(-n)] x(n)=xe(n)+xo(n),xe(n)=21[x(n)+x(n)] x o ( n ) = 1 2 [ x ( n ) − x ∗ ( − n ) ] x_o(n)=\frac{1}{2}[x(n)-x^*(-n)] xo(n)=21[x(n)x(n)]频域函数 X ( e j ω ) X(e^{j\omega}) X(e)也有一样的结论。
    • 序列分成实部和虚部两部分,实部的DTFT具有共轭对称性,虚部乘j一起对应的DTFT有反对称性
    • 将序列分为共轭对称部分 x e ( n ) x_e(n) xe(n)和共轭反对称部分 x o ( n ) x_o(n) xo(n) x ( n ) = x e ( n ) + x o ( n ) x(n)=x_e(n)+x_o(n) x(n)=xe(n)+xo(n),分别DTFT, D T F T [ x e ( n ) ] = X R ( e j ω ) DTFT[x_e(n)]=X_R(e^{j\omega}) DTFT[xe(n)]=XR(e) D T F T [ x 0 ( n ) ] = j X I ( e j ω ) DTFT[x_0(n)]=jX_I(e^{j\omega}) DTFT[x0(n)]=jXI(e)
D T F T [ x e ( n ) ] = X R ( e j ω ) DTFT[x_e(n)]=X_R(e^{j\omega}) DTFT[xe(n)]=XR(e) D T F T [ x r ( n ) ] = X e ( e j ω ) DTFT[x_r(n)]=X_e(e^{j\omega}) DTFT[xr(n)]=Xe(e)
D T F T [ x 0 ( n ) ] = j X I ( e j ω ) DTFT[x_0(n)]=jX_I(e^{j\omega}) DTFT[x0(n)]=jXI(e) D T F T [ j x i ( n ) ] = X o ( e j ω ) DTFT[jx_i(n)]=X_o(e^{j\omega}) DTFT[jxi(n)]=Xo(e)

一个域的实部对应另一个域的共轭对称分量,一个域的虚部对应另一个域的共轭反对称分量

  • 设h(n)是实因果序列,DTFT的共轭反对称部分为零,实部对应的是共轭对称分量 H e ( e j ω ) H_e(e^{j\omega}) He(e)。实序列的DTFT的实部是偶函数,虚部是奇函数。共轭对称部分 H e ( e j ω ) H_e(e^{j\omega}) He(e)模平方 ∣ H e ( e j ω ) ∣ 2 |H_e(e^{j\omega})|^2 He(e)2 ω \omega ω的偶函数,相位 a r g [ H e ( e j ω ) ] arg[H_e(e^{j\omega})] arg[He(e)] ω \omega ω的奇函数
  • 时域卷积定理:设 y ( n ) = x ( n ) ∗ h ( n ) y(n)=x(n)^*h(n) y(n)=x(n)h(n) Y ( e j ω ) = X ( x j ω ) ⋅ H ( e j ω ) Y(e^{j\omega})=X(x^{j\omega})\cdot H(e^{j\omega}) Y(e)=X(x)H(e)输出信号也可以这样求
  • 频域卷积定理:假设 X ( e j ω ) = D T F T [ x ( n ) ] , H ( e j ω ) = D T F T [ h ( n ) ] , y ( n ) = x ( n ) h ( n ) X(e^{j\omega})=DTFT[x(n)],H(e^{j\omega})=DTFT[h(n)],y(n)=x(n)h(n) X(e)=DTFT[x(n)],H(e)=DTFT[h(n)],y(n)=x(n)h(n)z,则 Y ( e j ω ) = 1 2 π X ( e j ω ) ∗ H ( e j ω ) = 1 2 π ∫ − π π H ( e j θ ) H ( e j ( ω − θ ) ) d θ Y(e^{j\omega})=\frac{1}{2\pi}X(e^{j\omega})*H(e^{j\omega})=\frac{1}{2\pi}\int_{-\pi}^\pi H(e^{j\theta})H(e^{j(\omega-\theta)})d\theta Y(e)=2π1X(e)H(e)=2π1ππH(ejθ)H(ej(ωθ))dθ
  • 帕斯瓦尔定理:信号时域的总能量等于频域的总能量:能量守恒
    在这里插入图片描述
    在这里插入图片描述

1.3 基本序列的离散时间傅里叶变换

  • 单位脉冲序列的DTFT: D T F T [ δ ( n ) ] = ∑ n = − ∞ ∞ δ ( n ) e − j ω n = 1 DTFT[\delta(n)]=\sum_{n=-\infty}^{\infty}\delta(n)e^{-j\omega n}=1 DTFT[δ(n)]=n=δ(n)ejωn=1
  • 常数1的DTFT: X ( e j ω ) = 2 π ∑ l = − ∞ ∞ δ ( ω − 2 π l ) X(e^{j\omega})=2\pi\sum_{l=-\infty}^{\infty}\delta(\omega-2\pi l) X(e)=2πl=δ(ω2πl)其频谱函数是在 ω = 2 π l \omega=2\pi l ω=2πl处的单位冲激函数,强度为 2 π 2\pi 2π
    在这里插入图片描述

2. 离散时间信号的Z域分析

解决傅里叶变换存在的问题,实用价值的信号 u ( n ) , n u ( n ) u(n),nu(n) u(n),nu(n)无法通过DTFT计算频域信号;由初始条件或输入变化引起的系统瞬态响应不能通过DTFT计算。

2.1 定义

X ( z ) = ∑ n = − ∞ ∞ x ( n ) z − n X(z)=\sum_{n=-\infty}^{\infty}x(n)z^{-n} X(z)=n=x(n)zn
z是一个复变量,它所在的复平面称为z平面, − ∞ < n < + ∞ -\infty<n<+\infty <n<+,双边Z变换。单边Z变换的n从0到 + ∞ +\infty +。因果序列的单双边变换是一样的。Z 变换的条件是等式右边收敛,既级数绝对可和,z取值的域叫做收敛域,在二维坐标上是一个环形。
常用的z变换是一个有理函数 X ( z ) = P ( z ) Q ( z ) X(z)=\frac{P(z)}{Q(z)} X(z)=Q(z)P(z),P(z)的根是X(z)的零点,Q(z)的根是X(z)的极点,收敛域总是用极点限定边界。

对比DTFT和z变换的公式可得 X ( e j ω ) = X ( z ) ∣ z = e j ω , z = e j ω X(e^{j\omega})=X(z)|_{z=e^{j\omega}},z=e^{j\omega}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值