微积分-前置5(求和公式)

1 定义

Σ i = m n a i = a m + a m + 1 + a m + 2 + . . . + a n − 1 + a n \Sigma_{i=m}^{n}a_i = a_m + a_{m+1} +a_{m+2} + ... + a_{n-1} + a_n Σi=mnai=am+am+1+am+2+...+an1+an

2 定理

(a) Σ i = m n c a i = c Σ i = m n a i \Sigma_{i=m}^{n}ca_i = c\Sigma_{i=m}^{n}a_i Σi=mncai=cΣi=mnai
(b) Σ i = m n ( a i + b i ) = Σ i = m n a i + Σ i = m n b i \Sigma_{i=m}^{n}(a_i + b_i) = \Sigma_{i=m}^{n}a_i + \Sigma_{i=m}^{n}b_i Σi=mn(ai+bi)=Σi=mnai+Σi=mnbi
(c) Σ i = m n ( a i − b i ) = Σ i = m n a i − Σ i = m n b i \Sigma_{i=m}^{n}(a_i - b_i) = \Sigma_{i=m}^{n}a_i - \Sigma_{i=m}^{n}b_i Σi=mn(aibi)=Σi=mnaiΣi=mnbi

  1. 证明(a):
    c a m + c a m + 1 + . . . + c a n = c ( a m + a m + 1 + . . + a n ) ca_m + ca_{m+1} + ... + ca_n = c(a_m + a_{m+1} + .. + a_n) cam+cam+1+...+can=c(am+am+1+..+an)
  2. 证明(b):
    ( a m + b m ) + ( a m + 1 + b m + 1 ) + . . . + ( a n + b n ) = ( a m + a m + 1 + . . . + a n ) + ( b m + b m + 1 + . . . + b n ) (a_m + b_m) + (a_{m+1} + b_{m+1}) + ... + (a_n + b_n) = (a_m + a_{m+1} + ... + a_n) + (b_m + b_{m+1} + ... + b_n) (am+bm)+(am+1+bm+1)+...+(an+bn)=(am+am+1+...+an)+(bm+bm+1+...+bn)
  3. Σ i = 1 n 1 \Sigma_{i=1}^{n}1 Σi=1n1
    Σ i = 1 n 1 = 1 + 1 + . . . + 1 ⏟ n = n \Sigma_{i=1}^{n}1 = \underbrace {1 + 1 + ... + 1}_n = n Σi=1n1=n 1+1+...+1=n
  4. Σ i = 1 n i \Sigma_{i=1}^{n}i Σi=1ni
    S = Σ i = 1 n i = 1 + 2 + . . . + n − 1 + n S = \Sigma_{i=1}^{n}i = 1 + 2 + ... + n -1 + n S=Σi=1ni=1+2+...+n1+n
    倒序 S = n + n − 1 + . . . + 2 + 1 S = n + n - 1 + ... + 2 + 1 S=n+n1+...+2+1
    相加 2 S = ( n + 1 ) + ( n + 1 ) + . . . + ( n + 1 ) ⏟ n = n ( n + 1 ) 2S = \underbrace{(n+1) + (n+1) + ... + (n+1)}_{n} = n(n+1) 2S=n (n+1)+(n+1)+...+(n+1)=n(n+1)
    因此 S = n ( n + 1 ) 2 S = \frac{n(n+1)}{2} S=2n(n+1)
  5. 证明 Σ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \Sigma_{i=1}^{n}i^2 = \frac{n(n+1)(2n+1)}{6} Σi=1ni2=6n(n+1)(2n+1)
    (a) 第一种解法:
    Σ i = 1 n [ ( i + 1 ) 3 − i 3 ] = ( 2 3 − 1 3 ) + ( 3 3 − 2 3 ) + . . . + [ n 3 − ( n − 1 ) 3 ] + [ ( n + 1 ) 3 − n 3 ] = ( n + 1 ) 3 − 1 3 = n 3 + 3 n 2 + 3 n \Sigma_{i=1}^{n}[(i + 1)^3 - i^3] = (2^3 - 1^3) + (3^3 - 2^3) + ... + [n^3 - (n-1)^3] + [(n+1)^3 - n^3] = (n+1)^3 - 1^3 = n^3 + 3n^2 +3n Σi=1n[(i+1)3i3]=(2313)+(3323)+...+[n3(n1)3]+[(n+1)3n3]=(n+1)313=n3+3n2+3n
    另一方面
    Σ i = 1 n [ ( i + 1 ) 3 − i 3 ] = Σ i = 1 n [ 3 i 2 + 3 i + 1 ] = 3 S + 3 n ( n + 1 ) 2 + n = 3 S + 3 2 n 2 + 5 2 n \Sigma_{i=1}^{n}[(i+1)^3 - i^3] = \Sigma_{i=1}^{n}[3i^2+3i+1] = 3S + 3\frac{n(n+1)}{2}+n = 3S + \frac{3}{2}n^2+\frac{5}{2}n Σi=1n[(i+1)3i3]=Σi=1n[3i2+3i+1]=3S+32n(n+1)+n=3S+23n2+25n
    因此
    n 3 + 3 n 2 + 3 n = 3 S + 3 2 n 2 + 5 2 n n^3 + 3n^2 +3n = 3S + \frac{3}{2}n^2+\frac{5}{2}n n3+3n2+3n=3S+23n2+25n
    简化方程可得
    S = n 3 + 3 2 n 2 + 1 2 n = n ( n + 1 ) ( 2 n + 1 ) 6 S = n^3 + \frac{3}{2}n^2 + \frac{1}{2}n = \frac{n(n+1)(2n+1)}{6} S=n3+23n2+21n=6n(n+1)(2n+1)
    (b) 第二种解法
    S n S_n Sn 为给定公式。
    S 1 S_1 S1 为真,因为 1 2 = 1 ( 1 + 1 ) ( 2 ⋅ 1 + 1 ) 6 1^2 = \frac{1(1+1)(2\cdot1+1)}{6} 12=61(1+1)(21+1)
    假设 S k S_k Sk 为真;即
    1 2 + 2 2 + . . . + k 2 = k ( k + 1 ) ( 2 k + 1 ) 6 1^2 + 2^2 + ... + k^2 = \frac{k(k+1)(2k+1)}{6} 12+22+...+k2=6k(k+1)(2k+1)
    然后
    1 2 + 2 2 + . . . + ( k + 1 ) 2 = ( 1 2 + 2 2 + . . . + k 2 ) + ( k + 1 ) 2 = k ( k + 1 ) ( 2 k + 1 ) 6 + ( k + 1 ) 2 = ( k + 1 ) k ( 2 k + 1 ) + 6 ( k + 1 ) 6 = ( k + 1 ) 2 k 2 + 7 k + 6 6 = ( k + 1 ) ( k + 2 ) ( 2 k + 3 ) 6 = ( k + 1 ) [ ( k + 1 ) + 1 ] [ 2 ( k + 1 ) + 1 ] 6 1^2 + 2^2 + ... + (k+1)^2 = (1^2 + 2^2 + ... + k^2) + (k+1)^2 \\ = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \\ =(k+1)\frac{k(2k+1) + 6(k+1)}{6} \\ =(k+1)\frac{2k^2+7k+6}{6} \\ =\frac{(k+1)(k+2)(2k+3)}{6}\\ =\frac{(k+1)[(k+1) + 1][2(k+1)+1]}{6} 12+22+...+(k+1)2=(12+22+...+k2)+(k+1)2=6k(k+1)(2k+1)+(k+1)2=(k+1)6k(2k+1)+6(k+1)=(k+1)62k2+7k+6=6(k+1)(k+2)(2k+3)=6(k+1)[(k+1)+1][2(k+1)+1]
    所以 S k + 1 S_{k+1} Sk+1 成立。
    根据数学归纳法, S n S_n Sn 对于所有的 n n n 都成立。

3 定理

(a) Σ i = 1 n 1 = n \Sigma_{i=1}^{n}1=n Σi=1n1=n
(b) Σ i = 1 n c = c n \Sigma_{i=1}^{n}c=cn Σi=1nc=cn
(c) Σ i = 1 n i = n ( n + 1 ) 2 \Sigma_{i=1}^{n}i=\frac{n(n+1)}{2} Σi=1ni=2n(n+1)
(d) Σ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \Sigma_{i=1}^{n}i^2 = \frac{n(n+1)(2n+1)}{6} Σi=1ni2=6n(n+1)(2n+1)
(e) Σ i = 1 n i 3 = [ n ( n + 1 ) 2 ] 2 \Sigma_{i=1}^{n}i^3 = [\frac{n(n+1)}{2}]^2 Σi=1ni3=[2n(n+1)]2

练习题

  1. 求值
    (a) Σ i = 4 8 ( 3 i − 2 ) \Sigma_{i=4}^{8}(3i - 2) Σi=48(3i2)
    (b) Σ i = 1 n i ( i + 1 ) ( i + 2 ) \Sigma_{i=1}^{n}i(i+1)(i+2) Σi=1ni(i+1)(i+2)
  2. n n n 使得 Σ i = 1 n i = 78 \Sigma_{i=1}^{n}i = 78 Σi=1ni=78
  3. 用数学归纳法证明 3 (e)
  4. 用例5第一种解法证明 3 (e)
  5. 证明
    Σ i = 1 n a r i − 1 = a + a r + a r 2 + . . . + a r n − 1 = a ( r n − 1 ) r − 1 \Sigma_{i=1}^{n}ar^{i-1} = a + ar + ar^2 + ... + ar^{n-1} = \frac{a(r^n-1)}{r-1} Σi=1nari1=a+ar+ar2+...+arn1=r1a(rn1)
  6. Σ i = 1 n ( 2 i + 2 i ) \Sigma_{i=1}^{n}(2i + 2^i) Σi=1n(2i+2i)
  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值