微积分-微分应用4(渐近线)

之前,我们研究了无穷极限和垂直渐近线。在那里,我们让 x x x 接近某个数,结果是 y y y 的值变得任意大(正或负)。在这一节中,我们让 x x x 变得任意大(正或负),看看 y y y 会发生什么。当绘制图形时,我们会发现考虑这种所谓的端行为非常有用。

让我们首先研究函数 f f f 的行为,该函数由以下公式定义

f ( x ) = x 2 − 1 x 2 + 1 f(x) = \frac{x^2 - 1}{x^2 + 1} f(x)=x2+1x21

x x x 变得很大时。表格给出了此函数的值,精确到小数点后六位,并且由计算机绘制了 $f $的图。

( x )( f(x) )
0-1
±10
±20.600000
±30.800000
±40.882353
±50.923077
±100.980198
±500.999200
±1000.999800
±10000.999998

在这里插入图片描述
x x x 越来越大时,你可以看到 f ( x ) f(x) f(x) 的值越来越接近1。这种情况可以通过以下符号表达

lim ⁡ x → ∞ x 2 − 1 x 2 + 1 = 1 \lim_{{x \to \infty}} \frac{x^2 - 1}{x^2 + 1} = 1 xlimx2+1x21=1

一般来说,我们使用符号

lim ⁡ x → ∞ f ( x ) = L \lim_{{x \to \infty}} f(x) = L xlimf(x)=L

来表示 f ( x ) f(x) f(x) 的值在 x x x 变得越来越大时接近 L L L

1 无穷极限的直观定义

假设 f f f 是定义在某个区间 ( a , ∞ ) (a, \infty) (a,) 上的函数。那么

lim ⁡ x → ∞ f ( x ) = L \lim_{{x \to \infty}} f(x) = L xlimf(x)=L

意味着我们可以通过取足够大的 x x x 使得 f ( x ) f(x) f(x) 的值可以任意接近 L L L

另一个表示 lim ⁡ x → ∞ f ( x ) = L \lim_{{x \to \infty}} f(x) = L limxf(x)=L 的符号是

f ( x ) → L 当 x → ∞ f(x) \to L \quad \text{当} \quad x \to \infty f(x)Lx

该符号 ∞ \infty 并不表示一个具体的数字。然而,表达式 lim ⁡ x → ∞ f ( x ) = L \lim_{{x \to \infty}} f(x) = L limxf(x)=L 通常读作:

  • ”当 x x x 趋于无穷大时, f ( x ) f(x) f(x) 的极限是 L L L
  • 或者 “当 x x x 无限增大时, f ( x ) f(x) f(x) 的极限是 L L L

图中展示了定义1的几何说明。注意到函数 f f f 的图形有多种方式趋近于 y = L y = L y=L 这条水平渐近线。

### 图2

  • 第一张图显示函数 f ( x ) f(x) f(x) 单调递增接近 L L L
  • 第二张图显示函数 f ( x ) f(x) f(x) 单调递减接近 L L L
  • 第三张图显示函数 f ( x ) f(x) f(x) 振荡接近 L L L

定义2

假设 f f f 是定义在某个区间 ( − ∞ , a ) (-\infty, a) (,a) 上的函数。那么

lim ⁡ x → − ∞ f ( x ) = L \lim_{{x \to -\infty}} f(x) = L xlimf(x)=L

这意味着我们可以通过取足够大的负值 x x x 使得 f ( x ) f(x) f(x) 的值可以任意接近 L L L

再次强调,符号 − ∞ -\infty 并不表示一个具体的数字。然而,表达式 lim ⁡ x → − ∞ f ( x ) = L \lim_{{x \to -\infty}} f(x) = L limxf(x)=L 通常读作:

“当 x x x 趋于负无穷大时, f ( x ) f(x) f(x) 的极限是 L L L

定义2 在图中得到了说明。注意,当我们观察每个图形的最左端时,图形趋近于 y = L y = L y=L 这条线。
在这里插入图片描述
下面是通用定义。

定义3

直线 y = L y = L y=L 称为曲线 y = f ( x ) y = f(x) y=f(x)水平渐近线,当且仅当

lim ⁡ x → ∞ f ( x ) = L 或者 lim ⁡ x → − ∞ f ( x ) = L \lim_{{x \to \infty}} f(x) = L \quad \text{或者} \quad \lim_{{x \to -\infty}} f(x) = L xlimf(x)=L或者xlimf(x)=L

图中所绘的曲线 y = f ( x ) y = f(x) y=f(x) 具有 y = − 1 y = -1 y=1 y = 2 y = 2 y=2 作为其水平渐近线,因为

lim ⁡ x → ∞ f ( x ) = − 1 和 lim ⁡ x → − ∞ f ( x ) = 2 \lim_{{x \to \infty}} f(x) = -1 \quad \text{和} \quad \lim_{{x \to -\infty}} f(x) = 2 xlimf(x)=1xlimf(x)=2

示例 1 求函数 f f f 的无穷极限、无穷处的极限和渐近线,该函数的图像如图所示。
在这里插入图片描述

我们看到,当 x x x 从两侧接近 -1 时, f ( x ) f(x) f(x) 的值变得非常大,所以

lim ⁡ x → − 1 f ( x ) = ∞ \lim_{{x \to -1}} f(x) = \infty x1limf(x)=

注意到,当 x x x 从左侧接近 2 2 2 时, f ( x ) f(x) f(x) 变得非常负,但当 x x x 从右侧接近 2 2 2 时, f ( x ) f(x) f(x) 变得非常正。所以

lim ⁡ x → 2 − f ( x ) = − ∞ 和 lim ⁡ x → 2 + f ( x ) = ∞ \lim_{{x \to 2^-}} f(x) = -\infty \quad \text{和} \quad \lim_{{x \to 2^+}} f(x) = \infty x2limf(x)=x2+limf(x)=

因此,直线 x = − 1 x = -1 x=1 x = 2 x = 2 x=2 都是垂直渐近线。

x x x 变得非常大时, f ( x ) f(x) f(x) 似乎接近 4 4 4。但当 x x x 通过负值减小时, f ( x ) f(x) f(x) 接近 2 2 2。所以

lim ⁡ x → ∞ f ( x ) = 4 和 lim ⁡ x → − ∞ f ( x ) = 2 \lim_{{x \to \infty}} f(x) = 4 \quad \text{和} \quad \lim_{{x \to -\infty}} f(x) = 2 xlimf(x)=4xlimf(x)=2

这意味着 y = 4 y = 4 y=4 y = 2 y = 2 y=2 都是水平渐近线。

示例 2 求以下极限:

lim ⁡ x → ∞ 1 x 和 lim ⁡ x → − ∞ 1 x \lim_{x \to \infty} \frac{1}{x} \quad \text{和} \quad \lim_{x \to -\infty} \frac{1}{x} xlimx1xlimx1

注意到当 x x x 很大时, 1 x \frac{1}{x} x1 很小。例如:

1 100 = 0.01 1 1 , 000 = 0.001 1 1 , 000 , 000 = 0.000001 \frac{1}{100} = 0.01 \quad \frac{1}{1,000} = 0.001 \quad \frac{1}{1,000,000} = 0.000001 1001=0.011,0001=0.0011,000,0001=0.000001

事实上,通过取 x x x 足够大,我们可以使 1 x \frac{1}{x} x1 尽可能接近 0 0 0。因此,根据定义 1,我们有

lim ⁡ x → ∞ 1 x = 0 \lim_{x \to \infty} \frac{1}{x} = 0 xlimx1=0

类似的推理表明,当 x x x 很小时, 1 x \frac{1}{x} x1 也很小,因此我们也有

lim ⁡ x → − ∞ 1 x = 0 \lim_{x \to -\infty} \frac{1}{x} = 0 xlimx1=0

这表明直线 y = 0 y = 0 y=0 x x x 轴)是曲线 y = 1 x y = \frac{1}{x} y=x1 的水平渐近线。(这是一个等轴双曲线;参见图 。)
在这里插入图片描述
我们在前面给出的大多数极限法则也适用于无穷极限。特别地,如果我们结合法则 6 和 11 与示例 2 的结果,我们得到以下用于计算极限的重要规则。

定理 4

如果 r > 0 r > 0 r>0 是一个有理数,那么
lim ⁡ x → ∞ 1 x r = 0 \lim_{x \to \infty} \frac{1}{x^r} = 0 xlimxr1=0
如果 r > 0 r > 0 r>0 是一个有理数,并且 x r x^r xr 对所有 x x x 都定义,那么
lim ⁡ x → − ∞ 1 x r = 0 \lim_{x \to -\infty} \frac{1}{x^r} = 0 xlimxr1=0

示例 3 求以下极限,并指出在每个步骤中使用的极限性质:

lim ⁡ x → ∞ 3 x 2 − x − 2 5 x 2 + 4 x + 1 \lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} xlim5x2+4x+13x2x2

x x x 变得很大时,分子和分母都变得很大,因此很难直接看出它们的比值会发生什么变化。我们需要进行一些初步的代数处理。

为了求任意有理函数在无穷处的极限,首先我们将分子和分母都除以分母中出现的最高次幂的 x x x。(我们可以假设 x ≠ 0 x \neq 0 x=0,因为我们只对 x x x 的大值感兴趣。)在这个例子中,分母中的最高次幂是 x 2 x^2 x2,所以我们有:

lim ⁡ x → ∞ 3 x 2 − x − 2 5 x 2 + 4 x + 1 = lim ⁡ x → ∞ 3 x 2 − x − 2 x 2 5 x 2 + 4 x + 1 x 2 = lim ⁡ x → ∞ 3 − 1 x − 2 x 2 5 + 4 x + 1 x 2 \lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} = \lim_{x \to \infty} \frac{\frac{3x^2 - x - 2}{x^2}}{\frac{5x^2 + 4x + 1}{x^2}} = \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}} xlim5x2+4x+13x2x2=xlimx25x2+4x+1x23x2x2=xlim5+x4+x213x1x22

根据极限法则 5

= lim ⁡ x → ∞ ( 3 − 1 x − 2 x 2 ) lim ⁡ x → ∞ ( 5 + 4 x + 1 x 2 ) = \frac{\lim_{x \to \infty} \left(3 - \frac{1}{x} - \frac{2}{x^2}\right)}{\lim_{x \to \infty} \left(5 + \frac{4}{x} + \frac{1}{x^2}\right)} =limx(5+x4+x21)limx(3x1x22)

根据极限法则 1、2 和 3

= 3 − lim ⁡ x → ∞ 1 x − lim ⁡ x → ∞ 2 x 2 5 + lim ⁡ x → ∞ 4 x + lim ⁡ x → ∞ 1 x 2 = \frac{3 - \lim_{x \to \infty} \frac{1}{x} - \lim_{x \to \infty} \frac{2}{x^2}}{5 + \lim_{x \to \infty} \frac{4}{x} + \lim_{x \to \infty} \frac{1}{x^2}} =5+limxx4+limxx213limxx1limxx22

根据定理 7 和定理 4

= 3 − 0 − 0 5 + 0 + 0 = 3 5 = \frac{3 - 0 - 0}{5 + 0 + 0} = \frac{3}{5} =5+0+0300=53

类似的计算表明,当 x → − ∞ x \to -\infty x 时,极限也是 3 5 \frac{3}{5} 53。图中展示了这些计算的结果,说明了给定有理函数的图形如何接近水平渐近线 y = 3 5 = 0.6 y = \frac{3}{5} = 0.6 y=53=0.6

在这里插入图片描述
示例 4 求函数图像的水平和垂直渐近线:

f ( x ) = 2 x 2 + 1 3 x − 5 f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5} f(x)=3x52x2+1

将分子和分母都除以 x x x,并使用极限性质,我们有:

lim ⁡ x → ∞ 2 x 2 + 1 3 x − 5 = lim ⁡ x → ∞ 2 x 2 + 1 / x ( 3 x − 5 ) / x = lim ⁡ x → ∞ 2 + 1 x 2 3 − 5 x = lim ⁡ x → ∞ 2 + 1 x 2 lim ⁡ x → ∞ ( 3 − 5 x ) = lim ⁡ x → ∞ 2 + lim ⁡ x → ∞ 1 x 2 lim ⁡ x → ∞ 3 − 5 lim ⁡ x → ∞ 1 x = 2 + 0 3 − 5 ⋅ 0 = 2 3 \begin{align*}\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} &= \lim_{x \to \infty} \frac{\sqrt{2x^2 + 1} / x}{(3x - 5) / x} = \lim_{x \to \infty} \frac{\sqrt{2 + \frac{1}{x^2}}}{3 - \frac{5}{x}} \\ &= \frac{\lim_{x \to \infty} \sqrt{2 + \frac{1}{x^2}}}{\lim_{x \to \infty} \left(3 - \frac{5}{x}\right)} = \frac{\sqrt{\lim_{x \to \infty} 2 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 3 - 5 \lim_{x \to \infty} \frac{1}{x}} = \frac{\sqrt{2 + 0}}{3 - 5 \cdot 0} = \frac{\sqrt{2}}{3}\end{align*} xlim3x52x2+1 =xlim(3x5)/x2x2+1 /x=xlim3x52+x21 =limx(3x5)limx2+x21 =limx35limxx1limx2+limxx21 =3502+0 =32

因此,直线 y = 2 3 y = \frac{\sqrt{2}}{3} y=32 f f f 的水平渐近线。

在计算 x → − ∞ x \to -\infty x 的极限时,我们必须记住,对于 x < 0 x < 0 x<0,我们有 x 2 = ∣ x ∣ = − x \sqrt{x^2} = |x| = -x x2 =x=x。所以当我们将分子除以 x x x 时,对于 x < 0 x < 0 x<0 我们得到:

2 x 2 + 1 x = 2 x 2 + 1 − x 2 = − 2 x 2 + 1 x = − 2 + 1 x 2 \frac{\sqrt{2x^2 + 1}}{x} = \frac{\sqrt{2x^2 + 1}}{-\sqrt{x^2}} = -\frac{\sqrt{2x^2 + 1}}{x} = -\sqrt{2 + \frac{1}{x^2}} x2x2+1 =x2 2x2+1 =x2x2+1 =2+x21

因此,

lim ⁡ x → − ∞ 2 x 2 + 1 3 x − 5 = lim ⁡ x → − ∞ − 2 + 1 x 2 3 − 5 x = − 2 + 1 x 2 3 − 5 x = − 2 + 0 3 − 5 ⋅ 0 = − 2 3 \lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} = \lim_{x \to -\infty} \frac{-\sqrt{2 + \frac{1}{x^2}}}{3 - \frac{5}{x}} = -\frac{\sqrt{2 + \frac{1}{x^2}}}{3 - \frac{5}{x}} = -\frac{\sqrt{2 + 0}}{3 - 5 \cdot 0} = -\frac{\sqrt{2}}{3} xlim3x52x2+1 =xlim3x52+x21 =3x52+x21 =3502+0 =32

因此,直线 y = − 2 3 y = -\frac{\sqrt{2}}{3} y=32 也是水平渐近线。

垂直渐近线可能出现在分母 3 x − 5 = 0 3x - 5 = 0 3x5=0 的地方,即当 x = 5 3 x = \frac{5}{3} x=35 时。如果 x x x 接近 5 3 \frac{5}{3} 35 并且 x > 5 3 x > \frac{5}{3} x>35,那么分母接近 0 0 0 并且 3 x − 5 3x - 5 3x5 为正。分子 2 x 2 + 1 \sqrt{2x^2 + 1} 2x2+1 始终为正,因此 f ( x ) f(x) f(x) 为正。因此,

lim ⁡ x → ( 5 / 3 ) + 2 x 2 + 1 3 x − 5 = ∞ \lim_{x \to (5/3)^+} \frac{\sqrt{2x^2 + 1}}{3x - 5} = \infty x(5/3)+lim3x52x2+1 =

(注意当 x → 5 / 3 x \to 5/3 x5/3 时分子不趋向 0 0 0。)

如果 x x x 接近 5 3 \frac{5}{3} 35 x < 5 3 x < \frac{5}{3} x<35,那么 3 x − 5 < 0 3x - 5 < 0 3x5<0 并且 f ( x ) f(x) f(x) 的绝对值很大。因此,

lim ⁡ x → ( 5 / 3 ) − 2 x 2 + 1 3 x − 5 = − ∞ \lim_{x \to (5/3)^-} \frac{\sqrt{2x^2 + 1}}{3x - 5} = -\infty x(5/3)lim3x52x2+1 =

因此,垂直渐近线是 x = 5 3 x = \frac{5}{3} x=35。这些渐近线如图所示。
在这里插入图片描述
示例 5 计算极限:

lim ⁡ x → ∞ ( x 2 + 1 − x ) \lim_{x \to \infty} (\sqrt{x^2 + 1} - x) xlim(x2+1 x)

因为当 x x x 很大时, x 2 + 1 \sqrt{x^2 + 1} x2+1 x x x 都很大,所以很难看出它们的差值会发生什么变化。因此,我们使用代数来重写函数。首先将分子和分母乘以共轭根式:

lim ⁡ x → ∞ ( x 2 + 1 − x ) = lim ⁡ x → ∞ ( x 2 + 1 − x ) ⋅ x 2 + 1 + x x 2 + 1 + x = lim ⁡ x → ∞ ( x 2 + 1 ) − x 2 x 2 + 1 + x = lim ⁡ x → ∞ 1 x 2 + 1 + x \begin{align*} \lim_{x \to \infty} (\sqrt{x^2 + 1} - x) &= \lim_{x \to \infty} (\sqrt{x^2 + 1} - x) \cdot \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x} \\ &= \lim_{x \to \infty} \frac{(x^2 + 1) - x^2}{\sqrt{x^2 + 1} + x} = \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x} \end{align*} xlim(x2+1 x)=xlim(x2+1 x)x2+1 +xx2+1 +x=xlimx2+1 +x(x2+1)x2=xlimx2+1 +x1

注意到最后一个表达式的分母( x 2 + 1 + x \sqrt{x^2 + 1} + x x2+1 +x)在 x → ∞ x \to \infty x 时变得很大(它比 x x x 大)。所以:

lim ⁡ x → ∞ ( x 2 + 1 − x ) = lim ⁡ x → ∞ 1 x 2 + 1 + x = 0 \lim_{x \to \infty} (\sqrt{x^2 + 1} - x) = \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x} = 0 xlim(x2+1 x)=xlimx2+1 +x1=0

图说明了这个结果。
在这里插入图片描述
示例 6 计算极限:

lim ⁡ x → ∞ sin ⁡ 1 x \lim_{x \to \infty} \sin \frac{1}{x} xlimsinx1

如果令 t = 1 x t = \frac{1}{x} t=x1,则当 x → ∞ x \to \infty x 时, t → 0 + t \to 0^+ t0+。因此:

lim ⁡ x → ∞ sin ⁡ 1 x = lim ⁡ t → 0 + sin ⁡ t = 0 \lim_{x \to \infty} \sin \frac{1}{x} = \lim_{t \to 0^+} \sin t = 0 xlimsinx1=t0+limsint=0

示例 7 计算极限:

lim ⁡ x → ∞ sin ⁡ x \lim_{x \to \infty} \sin x xlimsinx

随着 x x x 的增加, sin ⁡ x \sin x sinx 的值在 1 1 1 − 1 -1 1 之间无限次地振荡,因此它们不会趋向于任何确定的数值。因此, lim ⁡ x → ∞ sin ⁡ x \lim_{x \to \infty} \sin x limxsinx 不存在。

无穷处的无穷极限

记号

lim ⁡ x → ∞ f ( x ) = ∞ \lim_{x \to \infty} f(x) = \infty xlimf(x)=

用于表示当 x x x 变大时, f ( x ) f(x) f(x) 的值变大。类似的意义适用于以下符号:

lim ⁡ x → − ∞ f ( x ) = ∞ lim ⁡ x → ∞ f ( x ) = − ∞ lim ⁡ x → − ∞ f ( x ) = − ∞ \lim_{x \to -\infty} f(x) = \infty \quad \lim_{x \to \infty} f(x) = -\infty \quad \lim_{x \to -\infty} f(x) = -\infty xlimf(x)=xlimf(x)=xlimf(x)=

示例 8 求以下极限: lim ⁡ x → ∞ x 3 lim ⁡ x → − ∞ x 3 \lim_{x \to \infty} x^3 \quad \lim_{x \to -\infty} x^3 limxx3limxx3

x x x 变得很大时, x 3 x^3 x3 也会变得很大。例如,

1 0 3 = 1000 10 0 3 = 1 , 000 , 000 100 0 3 = 1 , 000 , 000 , 000 10^3 = 1000 \quad 100^3 = 1,000,000 \quad 1000^3 = 1,000,000,000 103=10001003=1,000,00010003=1,000,000,000

事实上,通过使 x x x 足够大,我们可以使 x 3 x^3 x3 尽可能大。因此我们可以写

lim ⁡ x → ∞ x 3 = ∞ \lim_{x \to \infty} x^3 = \infty xlimx3=

类似地,当 x x x 变得很小时, x 3 x^3 x3 也会变得很小。因此,

lim ⁡ x → − ∞ x 3 = − ∞ \lim_{x \to -\infty} x^3 = -\infty xlimx3=

这些极限陈述也可以从 y = x 3 y = x^3 y=x3 的图形中看到。
在这里插入图片描述

示例 9 求以下极限: lim ⁡ x → ∞ ( x 2 − x ) \lim_{x \to \infty} (x^2 - x) limx(x2x)

如果写成:

lim ⁡ x → ∞ ( x 2 − x ) = lim ⁡ x → ∞ x 2 − lim ⁡ x → ∞ x = ∞ − ∞ \lim_{x \to \infty} (x^2 - x) = \lim_{x \to \infty} x^2 - \lim_{x \to \infty} x = \infty - \infty xlim(x2x)=xlimx2xlimx=

这是错误的。因为无穷极限无法应用于极限法则,因为 ∞ \infty 不是一个数( ∞ − ∞ \infty - \infty 无法定义)。

然而,我们可以写成:

lim ⁡ x → ∞ ( x 2 − x ) = lim ⁡ x → ∞ x ( x − 1 ) = ∞ \lim_{x \to \infty} (x^2 - x) = \lim_{x \to \infty} x(x - 1) = \infty xlim(x2x)=xlimx(x1)=

因为 x x x x − 1 x - 1 x1 都变得任意大,所以它们的乘积也会变得任意大。

示例 10 求以下极限: lim ⁡ x → ∞ x 2 + x 3 − x \lim_{x \to \infty} \frac{x^2 + x}{3 - x} limx3xx2+x

如示例 3 中所示,我们将分子和分母都除以分母中的最高次幂的 x x x,即 x x x

lim ⁡ x → ∞ x 2 + x 3 − x = lim ⁡ x → ∞ x 2 + x x 3 − x x = lim ⁡ x → ∞ x + 1 3 x − 1 \lim_{x \to \infty} \frac{x^2 + x}{3 - x} = \lim_{x \to \infty} \frac{\frac{x^2 + x}{x}}{\frac{3 - x}{x}} = \lim_{x \to \infty} \frac{x + 1}{\frac{3}{x} - 1} xlim3xx2+x=xlimx3xxx2+x=xlimx31x+1

因为 x + 1 → ∞ x + 1 \to \infty x+1 并且 3 x − 1 → 0 − 1 = − 1 \frac{3}{x} - 1 \to 0 - 1 = -1 x3101=1 x → ∞ x \to \infty x,所以:

lim ⁡ x → ∞ x + 1 3 x − 1 = − ∞ \lim_{x \to \infty} \frac{x + 1}{\frac{3}{x} - 1} = -\infty xlimx31x+1=

下一个示例表明,通过在无穷处使用无穷极限,结合截距,我们可以在不计算导数的情况下对多项式的图形有一个大致的了解。

示例 11 通过找到截距及其在 x → ∞ x \to \infty x x → − ∞ x \to -\infty x 时的极限,绘制函数 y = ( x − 2 ) 4 ( x + 1 ) 3 ( x − 1 ) y = (x - 2)^4 (x + 1)^3 (x - 1) y=(x2)4(x+1)3(x1) 的图像。

y y y 轴截距是 f ( 0 ) = ( − 2 ) 4 ⋅ 1 3 ⋅ ( − 1 ) = − 16 f(0) = (-2)^4 \cdot 1^3 \cdot (-1) = -16 f(0)=(2)413(1)=16,x 轴截距通过设 y = 0 y = 0 y=0 得出: x = 2 x = 2 x=2, − 1 -1 1, 1 1 1。注意,由于 ( x − 2 ) 4 (x - 2)^4 (x2)4 永远为非负,因此函数在 2 2 2处不改变符号;因此图像不会在 2 2 2处穿过 x x x 轴。图像在 − 1 -1 1 1 1 1 处穿过 x x x 轴。

x x x 很大时,三个因子都很大,因此

lim ⁡ x → ∞ ( x − 2 ) 4 ( x + 1 ) 3 ( x − 1 ) = ∞ \lim_{x \to \infty} (x - 2)^4 (x + 1)^3 (x - 1) = \infty xlim(x2)4(x+1)3(x1)=

x x x 很小时,第一个因子很大正值,第二和第三个因子都很大负值,因此

lim ⁡ x → − ∞ ( x − 2 ) 4 ( x + 1 ) 3 ( x − 1 ) = ∞ \lim_{x \to -\infty} (x - 2)^4 (x + 1)^3 (x - 1) = \infty xlim(x2)4(x+1)3(x1)=

结合这些信息,我们给出了图像的粗略草图。

在这里插入图片描述

精确定义

定义 1 可以精确地表述如下:

5 无穷处极限的精确定义

f f f 为定义在某个区间 ( a , ∞ ) (a, \infty) (a,) 上的函数。那么
lim ⁡ x → ∞ f ( x ) = L \lim_{x \to \infty} f(x) = L xlimf(x)=L
意味着对于每一个 ϵ > 0 \epsilon > 0 ϵ>0,存在一个对应的数 N N N,使得
如果 x > N 则 ∣ f ( x ) − L ∣ < ϵ 如果\quad x > N \quad则\quad |f(x) - L| < \epsilon 如果x>Nf(x)L<ϵ

用文字来说,这表示 f ( x ) f(x) f(x) 的值可以通过要求 x x x 足够大(大于某个数 N N N,其中 N N N 依赖于 ϵ \epsilon ϵ),使其任意接近 L L L(在距离 ϵ \epsilon ϵ 之内,其中 ϵ \epsilon ϵ 是任何正数)。在图形上,这表示通过保持 x x x 足够大(大于某个数 N N N),我们可以使 f f f 的图像位于给定的水平线 y = L − ϵ y = L - \epsilon y=Lϵ y = L + ϵ y = L + \epsilon y=L+ϵ 之间,如图所示。无论我们选择多小的 ϵ \epsilon ϵ,这必须都是真的。
在这里插入图片描述
相似的,定义 2 可以表述如下:

6 定义

f f f 为定义在某个区间 ( − ∞ , a ) (-\infty, a) (,a) 上的函数。那么
lim ⁡ x → − ∞ f ( x ) = L \lim_{x \to -\infty} f(x) = L xlimf(x)=L
意味着对于每一个 ϵ > 0 \epsilon > 0 ϵ>0,存在一个对应的数 N N N,使得
如果 x < N 则 ∣ f ( x ) − L ∣ < ϵ 如果\quad x < N \quad则\quad |f(x) - L| < \epsilon 如果x<Nf(x)L<ϵ

在这里插入图片描述
示例 12 使用图形找到一个数 ( N ) 使得:

如果   x > N   则   ∣ 3 x 2 − x − 2 5 x 2 + 4 x + 1 − 0.6 ∣ < 0.1 如果 \, x > N \, 则 \, \left| \frac{3x^2 - x - 2}{5x^2 + 4x + 1} - 0.6 \right| < 0.1 如果x>N 5x2+4x+13x2x20.6 <0.1

我们将给定的不等式重写为:

0.5 < 3 x 2 − x − 2 5 x 2 + 4 x + 1 < 0.7 0.5 < \frac{3x^2 - x - 2}{5x^2 + 4x + 1} < 0.7 0.5<5x2+4x+13x2x2<0.7

我们需要确定对于哪些 x x x 值给定的曲线位于水平线 y = 0.5 y = 0.5 y=0.5 y = 0.7 y = 0.7 y=0.7 之间。因此,我们在图中绘制曲线和这些水平线。然后使用光标估计曲线在 y = 0.5 y = 0.5 y=0.5 处交叉时 x ≈ 6.7 x \approx 6.7 x6.7。在这个数值的右侧,曲线似乎位于 y = 0.5 y = 0.5 y=0.5 y = 0.7 y = 0.7 y=0.7 之间。为了安全起见,我们可以四舍五入为:

如果   x > 7   则   ∣ 3 x 2 − x − 2 5 x 2 + 4 x + 1 − 0.6 ∣ < 0.1 如果 \, x > 7 \, 则 \, \left| \frac{3x^2 - x - 2}{5x^2 + 4x + 1} - 0.6 \right| < 0.1 如果x>7 5x2+4x+13x2x20.6 <0.1

换句话说,对于 ϵ = 0.1 \epsilon = 0.1 ϵ=0.1,我们可以选择 N = 7 N = 7 N=7(或任何更大的数值)在定义 5 中。
在这里插入图片描述
示例 13

使用定义 5 来证明 lim ⁡ x → ∞ 1 x = 0 \lim_{x \to \infty} \frac{1}{x} = 0 limxx1=0

给定 ϵ > 0 \epsilon > 0 ϵ>0,我们想找到 N N N 使得:

如果   x > N   则   ∣ 1 x − 0 ∣ < ϵ 如果 \, x > N \, 则 \, \left| \frac{1}{x} - 0 \right| < \epsilon 如果x>N x10 <ϵ

在计算极限时,我们可以假设 x > 0 x > 0 x>0。那么 1 x < ϵ \frac{1}{x} < \epsilon x1<ϵ 当且仅当 x > 1 ϵ x > \frac{1}{\epsilon} x>ϵ1。让我们选择 N = 1 ϵ N = \frac{1}{\epsilon} N=ϵ1。因此:

如果   x > N = 1 ϵ   则   ∣ 1 x − 0 ∣ = 1 x < ϵ 如果 \, x > N = \frac{1}{\epsilon} \, 则 \, \left| \frac{1}{x} - 0 \right| = \frac{1}{x} < \epsilon 如果x>N=ϵ1 x10 =x1<ϵ

因此,根据定义 5,

lim ⁡ x → ∞ 1 x = 0 \lim_{x \to \infty} \frac{1}{x} = 0 xlimx1=0

图通过展示一些 ϵ \epsilon ϵ 值和相应的 N N N 值来说明这一证明。
在这里插入图片描述

7 无穷处无穷极限的定义

f f f 为定义在某个区间 ( a , ∞ ) (a, \infty) (a,) 上的函数。那么
lim ⁡ x → ∞ f ( x ) = ∞ \lim_{x \to \infty} f(x) = \infty xlimf(x)=
意味着对于每一个正数 M M M,存在一个对应的正数 N N N,使得:
如果   x > N   则   f ( x ) > M 如果 \, x > N \, 则 \, f(x) > M 如果x>Nf(x)>M

当符号 ∞ \infty − ∞ -\infty 替代时,也适用类似的定义。

在这里插入图片描述

  • 20
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
牙科就诊管理系统利用当下成熟完善的SSM框架,使用跨平台的可开发大型商业网站的Java语言,以及最受欢迎的RDBMS应用软件之一的Mysql数据库进行程序开发。实现了用户在线查看数据。管理员管理病例管理、字典管理、公告管理、药单管理、药品管理、药品收藏管理、药品评价管理、药品订单管理、牙医管理、牙医收藏管理、牙医评价管理、牙医挂号管理、用户管理、管理员管理等功能。牙科就诊管理系统的开发根据操作人员需要设计的界面简洁美观,在功能模块布局上跟同类型网站保持一致,程序在实现基本要求功能时,也为数据信息面临的安全问题提供了一些实用的解决方案。可以说该程序在帮助管理者高效率地处理工作事务的同时,也实现了数据信息的整体化,规范化与自动化。 管理员在后台主要管理病例管理、字典管理、公告管理、药单管理、药品管理、药品收藏管理、药品评价管理、药品订单管理、牙医管理、牙医收藏管理、牙医评价管理、牙医挂号管理、用户管理、管理员管理等。 牙医列表页面,此页面提供给管理员的功能有:查看牙医、新增牙医、修改牙医、删除牙医等。公告信息管理页面提供的功能操作有:新增公告,修改公告,删除公告操作。公告类型管理页面显示所有公告类型,在此页面既可以让管理员添加新的公告信息类型,也能对已有的公告类型信息执行编辑更新,失效的公告类型信息也能让管理员快速删除。药品管理页面,此页面提供给管理员的功能有:新增药品,修改药品,删除药品。药品类型管理页面,此页面提供给管理员的功能有:新增药品类型,修改药品类型,删除药品类型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值