目录
kaggle 机器学习课程(Intro to ML)回顾与总结
前一段时间刚刚学完7个kaggle平台上的课程,个人感觉知识点比较全面,而且有的还有实战代码自己可以带着跑一遍加深理解。趁着还没忘得一干二净之前,做一下回顾复习,顺便分享给需要的机器学习入门的朋友们。再顺便练习一下markdown写法。
如果有其他推荐的学习方法,欢迎留言。求指教!
由于学完每个课程所需时间都不是很长,对于想要快速入门机器学习,数据分析的小伙伴还是挺友好的。觉得理解不足的地方可以另外自己可以再找资料补充。
Kaggle课程是啥?
- 能够快速数据科学入门,对参加kaggle比赛做项目有一定帮助
- 有的课程有实战练习
- 课程大都是由大神级别的科学家提供
- 学完课程可以获得电子证书
- 而且课程免费
Kaggle是由安东尼·高德布卢姆(Anthony Goldbloom)2010年在墨尔本创立的,世界知名的机器学习竞赛平台。Kaggle 官方表示,到目前为止在全世界范围内有超过 85 万的用户。2017年3月谷歌收购了Kaggle。在业界kaggle还算受到了较高的重视。
每学完一个kaggle平台上的课程,都会发行一个电子证书。电子证书大致长这个样子。
虽然具体不太清楚这个证书到底有多大认可度。不过kaggle作为世界上最流行的数据科学竞赛平台之一,个人觉得学习ROI(投资回报率)还算可以。
当然学习kaggle课程只是为了完善个人Profile的第一步。基础可以的人也可以直接通过打比赛来提升。
Intro to ML内容总结
通常机器学习模型来解决问题的步骤大致是这样的: