Pytorch运行过程中解决出现内存不足的问题

文章讲述了在使用Transformer模型进行O3浓度反演时遇到的速度慢和内存不足的挑战。作者尝试将模型转移到GPU上以提高速度,但预测阶段仍出现内存不足。通过调整batch_size并未解决问题,最终发现是反演过程中一次性加载全部数据导致的。解决方案是使用for循环逐个处理数据,从而避免内存溢出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 前提

利用Transformer模型进行O3浓度的反演

2. 问题

2.1 速度慢

一开始模型是在CPU上面跑的,为了加快速度,我改成了在GPU上跑
方法如下:
1、验证pytorch是否存在GPU版本
在Pycharm命令行输入

import torch

print(torch.cuda.is_available)
# 若输出为True,则存在GPU版本
# 若输出为False,则不存在GPU版本

我的输出为True,说明pytorch是存在GPU版本的
2、将模型从CPU版本转换到GPU版本

  • 声明使用GPU(指定具体的卡)
    PS:torch.device()是装torch.Tensor的一个空间。
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 'cuda' 这里如果没有指定具体的卡号,系统默认cuda:0
device = torch.device('cuda:2') 		# 使用2号卡
  • 将模型(model)加载到GPU上
model = Transformer()	#例子中,采用Transformer模型
model.to(device)
  • 将数据和标签放到GPU上【注意!什么数据可以被放入GPU-Tensor类型的数据】
# 只有Tensor类型的数据可以放入GPU中
# 可以一个个【batch_size】进行转换
inputs = inputs.to(device)
labels = labels.to(device)

如果结果还是显示你是在CPU上进行训练,要不就是模型没有加进去,要不就是数据没有加进去

2.2 内存不足

  1. 在使用CPU时,出现了内存不足的情况

RuntimeError: [enforce fail at C:\cb\pytorch_1000000000000\work\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 280410627200 bytes.

  1. 在使用GPU时,出现了内存不足的情况

torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 261.15 GiB (GPU 0; 8.00 GiB total capacity; 487.30 MiB already allocated; 5.71 GiB free; 506.00 MiB reserved in total by PyTorch) If reserved memory is >> allocated memory try sett

我的模型在训练的时候没有问题,在进行预测的时候,总是出现内存不足
(1)一开始我以为是batch_size大小的问题,在从128更改到4后,发现依旧存在问题,这说明不是batch_size大小的问题。
(2)然后,我猜测是反演过程的问题
我在进行模型反演的过程中,直接将全部数据输入到模型model中(大概有10万行),为了验证这个问题,我添加了一个for循环,一个一个数据的反演
在这里插入图片描述
问题解决!


学习链接:

Pytorch是一种基于Python语言的开源深度学习框架,其提供了强大的GPU计算能力。在Pytorch中,使用GPU加速可以显著地提高模型的训练速度和效率,尤其是在处理大规模数据集和深层网络时。 然而,当使用Pytorch进行大规模的深度学习训练时,可能会出现GPU内存超出的问题。这是因为深度学习网络通常需要处理大量的数据和参数,需要更多的内存空间来存储中间结果和计算缓存。如果GPU内存不足,就会导致程序崩溃或者无法正常运行。 为了解决这个问题,可以采用以下几种方法: 1. 减小batch size:减小批量大小可以减少每个小批量所需要的内存量,从而减少GPU内存的压力。但减小批量大小会降低训练速度和模型的收敛速度,需要权衡利弊。 2. 使用分布式训练:分布式训练可以将训练数据分布到多个GPU上,并行计算,从而降低每个GPU的负担。但需要对代码进行一定的修改和调整,并且需要在多个GPU之间进行通信,涉及到一定的技术难度。 3. 调整模型结构:可以通过精简模型结构、减少模型参数等方式来降低模型的计算复杂度,从而减少GPU内存的占用。但调整模型结构可能会影响模型的性能和精度。 4. 提高GPU显存的利用率:可以通过将数据存储和计算转化为张量形式、采用深度学习库的API等方式来提高GPU显存的利用率,从而减少内存的占用。 在使用Pytorch进行深度学习训练时,需要根据具体情况采用以上的一种或多种方法来解决GPU内存超出的问题,以保证训练的稳定性和效率。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值