[题]石子合并 #区间DP

本文介绍了一个基于环形结构的石子合并问题解决方案,通过动态规划算法寻找石子合并过程中的最大值与最小值,适用于NOI1995竞赛题。

题目

P1880 [NOI1995] 石子合并

这个相比普通的石子合并,有如下特点:

  1. 圆:这是个圈圈形状的,所以,将两段拼接在一起,然后跑跑跑。
  2. 要最大,和最小。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 310;
int f[N][N], d[N][N], sum[N], a[N], n;
int main() {
    memset(f, 0x3f, sizeof f);
    scanf("%d", &n);
    for (int i = 1; i <= n; i++) {
        scanf("%d", &a[i]);
        a[n + i] = a[i];
        f[i][i] = 0;
        f[n + i][n + i] = 0;
    }
    for (int i = 1; i <= 2 * n; i++) {
        sum[i] = sum[i - 1] + a[i];  //前缀和
    }
    for (int len = 2; len <= n; len++) {        //长度
        for (int i = 1; i <= 2 * n - 1; i++) {  //枚举起点
            int j = i + len - 1;
            if (j >= 2 * n)
                break;
            for (int k = i; k < j; k++) {  //枚举断点
                f[i][j] = min(f[i][j], f[i][k] + f[k + 1][j] + (sum[j] - sum[i - 1]));
                d[i][j] = max(d[i][j], d[i][k] + d[k + 1][j] + (sum[j] - sum[i - 1]));
            }
        }
    }
    int ans_max = 0, ans_min = 0x3f3f3f3f;
    for (int i = 1; i <= n; i++) {
        int j = i + n - 1;
        ans_max = max(ans_max, d[i][j]);
        ans_min = min(ans_min, f[i][j]);
    }
    printf("%d\n%d", ans_min, ans_max);
    return 0;
}

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值