深入浅出:从位运算、数据结构到算法与设计模式的全面技术指南“(第七节)排序算法(冒泡排序、选择排序、插入排序、希尔排序、归并排序)

Introduction:收纳技术相关的 Data StructureAlgorithmDesign Pattern等总结!

Algorithm

排序算法

十种常见排序算法可以分为两大类:

  • 非线性时间比较类排序

    通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序。

  • 线性时间非比较类排序

    不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此称为线性时间非比较类排序。

在这里插入图片描述

冒泡排序(Bubble Sort)

**循环遍历多次每次从前往后把大元素往后调,每次确定一个最大(最小)元素,多次后达到排序序列。**这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

在这里插入图片描述

算法步骤

  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数
  • 针对所有的元素重复以上的步骤,除了最后一个
  • 重复步骤1~3,直到排序完成

代码实现

/**
  * 冒泡排序
  * <p>
  * 描述:每轮连续比较相邻的两个数,前数大于后数,则进行替换。每轮完成后,本轮最大值已被移至最后
  *
  * @param arr 待排序数组
  */
public static int[] bubbleSort(int[] arr) {
    for (int i = 0; i < arr.length - 1; i++) {
        for (int j = 0; j < arr.length - 1 - i; j++) {
            // 每次比较2个相邻的数,前一个小于后一个
            if (arr[j] > arr[j + 1]) {
                int tmp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = tmp;
            }
        }
    }
    
    return arr;
}

以下是冒泡排序算法复杂度:

平均时间复杂度最好情况最坏情况空间复杂度
O(n²)O(n)O(n²)O(1)

冒泡排序是最容易实现的排序, 最坏的情况是每次都需要交换, 共需遍历并交换将近n²/2次, 时间复杂度为O(n²). 最佳的情况是内循环遍历一次后发现排序是对的, 因此退出循环, 时间复杂度为O(n)。平均来讲, 时间复杂度为O(n²). 由于冒泡排序中只有缓存的temp变量需要内存空间, 因此空间复杂度为常量O(1)。

Tips: 由于冒泡排序只在相邻元素大小不符合要求时才调换他们的位置, 它并不改变相同元素之间的相对顺序, 因此它是稳定的排序算法。

选择排序(Selection Sort)

选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

在这里插入图片描述

算法描述

n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:

  • 初始状态:无序区为R[1…n],有序区为空
  • 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1…i-1]和R(i…n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1…i]和R[i+1…n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区
  • n-1趟结束,数组有序化了

代码实现

 /**
     * 选择排序
     * <p>
     * 描述:每轮选择出最小值,然后依次放置最前面
     *
     * @param arr 待排序数组
     */
    public static int[] selectSort(int[] arr) {
        for (int i = 0; i < arr.length - 1; i++) {
            // 选最小的记录
            int min = i;
            for (int j = i + 1; j < arr.length; j++) {
                if (arr[min] > arr[j]) {
                    min = j;
                }
            }

            // 内层循环结束后,即找到本轮循环的最小的数以后,再进行交换:交换a[i]和a[min]
            if (min != i) {
                int temp = arr[i];
                arr[i] = arr[min];
                arr[min] = temp;
            }
        }

        return arr;
    }

以下是选择排序复杂度:

平均时间复杂度最好情况最坏情况空间复杂度
O(n²)O(n²)O(n²)O(1)

选择排序的简单和直观名副其实,这也造就了它”出了名的慢性子”,无论是哪种情况,哪怕原数组已排序完成,它也将花费将近n²/2次遍历来确认一遍。即便是这样,它的排序结果也还是不稳定的。 唯一值得高兴的是,它并不耗费额外的内存空间。

插入排序(Insertion Sort)

插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序由于操作不尽相同,可分为 直接插入排序折半插入排序(又称二分插入排序)、链表插入排序希尔排序

在这里插入图片描述

算法描述

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

  • 从第一个元素开始,该元素可以认为已经被排序
  • 取出下一个元素,在已经排序的元素序列中从后向前扫描
  • 如果该元素(已排序)大于新元素,将该元素移到下一位置
  • 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
  • 将新元素插入到该位置后
  • 重复步骤2~5

代码实现

   /**
     * 直接插入排序
     * <p>
     * 1. 从第一个元素开始,该元素可以认为已经被排序
     * 2. 取出下一个元素,在已经排序的元素序列中从后向前扫描
     * 3. 如果该元素(已排序)大于新元素,将该元素移到下一位置
     * 4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
     * 5. 将新元素插入到该位置后
     * 6. 重复步骤2~5
     *
     * @param arr 待排序数组
     */
    public static int[] insertionSort(int[] arr) {
        for (int i = 1; i < arr.length; i++) {
            // 取出下一个元素,在已经排序的元素序列中从后向前扫描
            int temp = arr[i];
            for (int j = i; j >= 0; j--) {
                if (j > 0 && arr[j - 1] > temp) {
                    // 如果该元素(已排序)大于取出的元素temp,将该元素移到下一位置
                    arr[j] = arr[j - 1];
                } else {
                    // 将新元素插入到该位置后
                    arr[j] = temp;
                    break;
                }
            }
        }

        return arr;
    }

    /**
     * 折半插入排序
     * <p>
     * 往前找合适的插入位置时采用二分查找的方式,即折半插入
     * <p>
     * 交换次数较多的实现
     *
     * @param arr 待排序数组
     */
    public static int[] insertionBinarySort(int[] arr) {
        for (int i = 1; i < arr.length; i++) {
            if (arr[i] < arr[i - 1]) {
                int tmp = arr[i];

                // 记录搜索范围的左边界,右边界
                int low = 0, high = i - 1;
                while (low <= high) {
                    // 记录中间位置Index
                    int mid = (low + high) / 2;
                    // 比较中间位置数据和i处数据大小,以缩小搜索范围
                    if (arr[mid] < tmp) {
                        // 左边指针则一只中间位置+1
                        low = mid + 1;
                    } else {
                        // 右边指针则一只中间位置-1
                        high = mid - 1;
                    }
                }

                // 将low~i处数据整体向后移动1位
                for (int j = i; j > low; j--) {
                    arr[j] = arr[j - 1];
                }
                arr[low] = tmp;
            }
        }

        return arr;
    }

插入排序复杂度:

平均时间复杂度最好情况最坏情况空间复杂度
O(n²)O(n)O(n²)O(1)

Tips:由于直接插入排序每次只移动一个元素的位, 并不会改变值相同的元素之间的排序, 因此它是一种稳定排序。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

希尔排序(Shell Sort)

1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序

在这里插入图片描述

算法描述

先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

  • 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1
  • 按增量序列个数k,对序列进行k 趟排序
  • 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度

代码实现

 /**
     * 希尔排序
     * <p>
     * 1. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;(一般初次取数组半长,之后每次再减半,直到增量为1)
     * 2. 按增量序列个数k,对序列进行k 趟排序;
     * 3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。
     * 仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
     *
     * @param arr 待排序数组
     */
    public static int[] shellSort(int[] arr) {
        int gap = arr.length / 2;

        // 不断缩小gap,直到1为止
        for (; gap > 0; gap /= 2) {
            // 使用当前gap进行组内插入排序
            for (int j = 0; (j + gap) < arr.length; j++) {
                for (int k = 0; (k + gap) < arr.length; k += gap) {
                    if (arr[k] > arr[k + gap]) {
                        int temp = arr[k + gap];
                        arr[k + gap] = arr[k];
                        arr[k] = temp;
                    }
                }
            }
        }

        return arr;
    }

以下是希尔排序复杂度:

平均时间复杂度最好情况最坏情况空间复杂度
O(nlog2 n)O(nlog2 n)O(nlog2 n)O(1)

Tips:希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版)》的合著者Robert Sedgewick提出的。

归并排序(Merging Sort)

简介

基本思想:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

场景使用

应用场景:内存少的时候使用,可以进行并行计算的时候使用。

步骤

  • 选择相邻两个数组成一个有序序列
  • 选择相邻的两个有序序列组成一个有序序列
  • 重复第二步,直到全部组成一个有序序列

在这里插入图片描述
算法描述

a.递归法(假设序列共有n个元素)

①. 将序列每相邻两个数字进行归并操作,形成 floor(n/2)个序列,排序后每个序列包含两个元素;
②. 将上述序列再次归并,形成 floor(n/4)个序列,每个序列包含四个元素;
③. 重复步骤②,直到所有元素排序完毕。

b.迭代法

①. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
②. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
③. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
④. 重复步骤③直到某一指针到达序列尾
⑤. 将另一序列剩下的所有元素直接复制到合并序列尾

代码实现

/**
     * 归并排序(递归)
     * <p>
     * ①. 将序列每相邻两个数字进行归并操作,形成 floor(n/2)个序列,排序后每个序列包含两个元素;
     * ②. 将上述序列再次归并,形成 floor(n/4)个序列,每个序列包含四个元素;
     * ③. 重复步骤②,直到所有元素排序完毕。
     *
     * @param arr 待排序数组
     */
    public static int[] mergeSort(int[] arr) {
        return mergeSort(arr, 0, arr.length - 1);
    }

    private static int[] mergeSort(int[] arr, int low, int high) {
        int center = (high + low) / 2;
        if (low < high) {
            // 递归,直到low==high,也就是数组已不能再分了,
            mergeSort(arr, low, center);
            mergeSort(arr, center + 1, high);

            // 当数组不能再分,开始归并排序
            mergeSort(arr, low, center, high);
        }

        return arr;
    }

    private static void mergeSort(int[] a, int low, int mid, int high) {
        int[] temp = new int[high - low + 1];
        int i = low, j = mid + 1, k = 0;

        // 把较小的数先移到新数组中
        while (i <= mid && j <= high) {
            if (a[i] < a[j]) {
                temp[k++] = a[i++];
            } else {
                temp[k++] = a[j++];
            }
        }

        // 把左边剩余的数移入数组
        while (i <= mid) {
            temp[k++] = a[i++];
        }

        // 把右边边剩余的数移入数组
        while (j <= high) {
            temp[k++] = a[j++];
        }

        // 把新数组中的数覆盖nums数组
        for (int x = 0; x < temp.length; x++) {
            a[x + low] = temp[x];
        }
    }

以下是归并排序算法复杂度:

平均时间复杂度最好情况最坏情况空间复杂度
O(nlog₂n)O(nlog₂n)O(nlog₂n)O(n)

从效率上看,归并排序可算是排序算法中的”佼佼者”. 假设数组长度为n,那么拆分数组共需logn,, 又每步都是一个普通的合并子数组的过程, 时间复杂度为O(n), 故其综合时间复杂度为O(nlogn)。另一方面, 归并排序多次递归过程中拆分的子数组需要保存在内存空间, 其空间复杂度为O(n)。

Tips:和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlogn)的时间复杂度。代价是需要额外的内存空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code_未来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值