最短路径--Dijkstra算法.

1.Dijkstra 图解

首先来看一张有向图
堆这个图的边描述就是edges [[0,1],[0,2],[1,2],[1,3],[2,4],[3,2],[3,4],[3,5],[4,5]](默认边带权为1
在这里插入图片描述
使用矩阵来描述如下图
在这里插入图片描述

现在我们要计算从节点0到各个节点的最短路径。

使用Dijkstra算法我们需要一张表,用来记从0到各个节点的最短路径,以及记录当前路径是不是0到这个点的最短路径。00的节点为 0,而其他未知就为无穷,所以表的初始如下图所示。
在这里插入图片描述
现在我们从节点0开始遍历,遍历的规则是找到上述表格中没有被访问过!visited且距离当前节点最进的节点distance[y] < distance[x](y为找到的节点,x为当前比较节点)

找到当前最小节点以后,就更新经过这个节点的最小距离这个节点的最小距离。

简单点说就是:每次从「未确定节点」中取一个与起点距离最短的点,将它归类为「已确定节点」,并用它「更新」从起点到其他所有「未确定节点」的距离。直到所有点都被归类为「已确定节点」。

这里我们还安排一个x = -1,用来每次找到「最短距离最小」且「未被更新」的点 x

以下是Dijkstra的遍历的核心代码,通过对下面代码的扩充我们就可以完成一些无权的最短路径算法问题。

for(int i = 0; i < n; i++){
		int x = -1;
		for(int y = 0; y < n; y++){
			if(!visited[y] && (x == -1 || distance[y] < distance[x])){
				x = y;
			}
		}
		visited[x] = true;
		for(int y = 0; y < n; y++){
		distance[y] = Math.min(distance[y], distance[x] + grid[x][y]);
	}
}

在继续往下读的时候可以尝试一下力扣的最短路径相关题目743. 网络延迟时间

如果上述代码没有弄明白可以观看一些图解视频会更加直观,而且可以使用编辑器进行代码单步执行,来理解这些核心的代码思想

3.题目代码实现

在上述的题目中,在计算之前,我们先要把图构建好

int[][] grid = new int[n + 1][n + 1];
int INF = Integer.MAX_VALUE / 2;
for(int i = 1; i  <= n; i++){
	Arrays.fill(grid[i], INF);
}
for(int[] edge : times){
	grid[edge[0]][edge[1]] = edge[2];
}

将图建好以后我们就需要进行记录表相关的初始化操作。

boolean[] visited = new boolean[n + 1];
int[] distance = new int[n + 1];
Arrays.fill(distance,INF);

接下来就可以使用核心代码来计算最小路径了。

4.优先队列优化

为什么要使用优先队列优化呢?使用优先队列,我们就可以使用广度优先搜索来计算最小路径,因为我们每一次都要找到表中当前最小的路径是哪一条,这样遍历会花费很多的时间,所有我们可以使用小顶堆来进行(优先队列)来减少这样的查找,从而解决这个问题。

### 回答1: Dijkstra算法是一种用于解决单源最短路径问题的算法。它的基本思想是从起点开始,逐步扩展到其他节点,每次选择当前距离起点最近的节点,并更新与该节点相邻的节点的距离。通过这种方式,可以找到起点到其他节点的最短路径Dijkstra算法的时间复杂度为O(n^2),但是可以通过使用堆优化来将其优化到O(nlogn)。 ### 回答2: Dijkstra算法是一种解决单源最短路径问题的贪心算法,其思想是利用“松弛”操作来不断更新当前点到源点的最短距离,但前提是所有边的权重非负。如果有负权边,则需要使用Bellman-Ford算法。 首先,我们需要定义一个数组dis数组,用于存储源点s到各个点的最短距离。dis[s]初始为0,其他点初始为无限大。接着,我们需要维护一个集合S,表示已经求出最短路径的点的集合。将源点s加入集合S中。 对于每个未加入S的点v,我们通过选择其它点到源点s的最短路径中的一个点u,然后将dis[v]更新为dis[u] + w(u,v),其中w(u,v)表示边(u,v)的权重。具体地,这个操作称为“松弛”操作。 在松弛操作中,我们需要比较dis[u] + w(u,v)和dis[v]的大小,如果前者更小,则更新dis[v]的值为dis[u] + w(u,v)。 重复执行以上操作,直到所有的点都加入到集合S中。最后dis数组中存储的就是源点s到所有点的最短距离。 Dijkstra算法可以用堆优化,时间复杂度为O(mlogn),其中n表示图中的点数,m表示边数。Dijkstra算法也可以应用于稠密图,时间复杂度为O(n^2)。 总之,Dijkstra算法是一种经典的求解单源最短路径问题的算法,其实现简单,效率高,被广泛应用于路由算法和图像处理等领域。 ### 回答3: Dijkstra算法是一种在加权有向图中寻找从源节点到其他节点的最短路径的贪心算法。该算法基于其它路径加权节点的已知最短路径去更新更长路径的信息直到找到从源节点到目标节点的最短路径。在整个计算过程中,Dijkstra算法需要维护一个待处理节点集合和一个距离源节点的最短路径数组。 算法的具体实现如下: 1. 初始化源节点及其距离为0,其他节点的距离为无穷大。 2. 将源节点加入到待处理节点集合中。 3. 对于源节点的所有相邻节点,更新它们距离源节点的最短路径。如果当前路径小于之前已知的最短路径,则更新最短路径数组。 4. 遍历待处理节点集合中除源节点外的节点,选择距离最近的节点作为当前节点,并将它从待处理机集合中移除。 5. 对于当前节点的所有相邻节点,更新它们距离源节点的最短路径。如果当前路径小于之前已知的最短路径,则更新最短路径数组。 6. 重复步骤4和5,直到待处理节点集合为空或者目标节点已经被遍历。 Dijkstra算法的时间复杂度为O(n^2),其中n为节点数,由于它是贪心算法,只能处理非负权重的图,否则可能会陷入死循环。但是,Dijkstra算法是单源最短路径问题的最优解,因此在处理小规模的图时效果很好。在处理大规模图时,需要使用其他高效的算法,如A*算法、Bellman-Ford算法等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值