【mmdetection代码解读 3.x版本】以Fcos+FasterRcnn为例

前言

因为之前一直在搞DOTA数据集的旋转框检测,所以一直在用mmrotate作为主要工具。现在回来重新搞mmdetection框架发现有了不小的变化,出了3.x版本的新内容。相比于之前的版本变化比较大,因此正好做一个代码解读与之前发布的2.x版本进行对照。

新版本最让我惊喜的是可以将单阶段检测器作为 RPN进行两阶段的检测,官方文档如下
https://mmdetection.readthedocs.io/zh_CN/latest/user_guides/single_stage_as_rpn.html

按照官方文档的要求我们将Fcos作为RPN的提取网络,为ROI提取proposal,具体配置文件如下

_base_ = [
    '../_base_/models/faster-rcnn_r50_fpn.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
    # 从 configs/fcos/fcos_r50-caffe_fpn_gn-head_1x_coco.py 复制
    neck=dict(
        start_level=1,
        add_extra_convs='on_output',  # 使用 P5
        relu_before_extra_convs=True),
    rpn_head=dict(
        _delete_=True,  # 忽略未使用的旧设置
        type='FCOSHead',
        num_classes=1,  # 对于 rpn, num_classes = 1,如果 num_classes > 1,它将在 TwoStageDetector 中自动设置为1
        in_channels=256,
        stacked_convs=4,
        feat_channels=256,
        strides=[8, 16, 32, 64, 128],
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(type='IoULoss', loss_weight=1.0),
        loss_centerness=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
    roi_head=dict(  # featmap_strides 的更新取决于于颈部的步伐
        bbox_roi_extractor=dict(featmap_strides=[8, 16, 32, 64, 128])))
# 学习率
param_scheduler = [
    dict(
        type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
        end=1000),  # 慢慢增加 lr,否则损失变成 NAN
    dict(
        type='MultiStepLR',
        begin=0,
        end=12,
        by_epoch=True,
        milestones=[8, 11],
        gamma=0.1)
]

和之前2.x版本的代码分析一样,跳过Resnet和FPN的部分,我们直接从RPN开始

RPN部分的代码

我们首先找到FasterRCNN这主类,可以看到继承了TwoStageDetector,所以我们接下来的重点是TwoStageDetector这个类
在这里插入图片描述

1. loss函数(two_stage.py)

不知道为什么3.x版本的two_stage函数没有了forward函数反而多了几个loss,predict函数。因为不知道运行顺序所以直接每一个类都打上了断点,最后发现是进入了loss函数里。

 def loss(self, batch_inputs: Tensor,
             batch_data_samples: SampleList) -> dict:

在这里插入图片描述

x = self.extract_feat(batch_inputs)

其中extract_feat的内容是
	x = self.backbone(batch_inputs)
    if self.with_neck:
        x = self.neck(x)
    return x

在这里插入图片描述

losses = dict()

if self.with_rpn:
    proposal_cfg = self.train_cfg.get('rpn_proposal',
                                      self.test_cfg.rpn)
    rpn_data_samples = copy.deepcopy(batch_data_samples)

在这里插入图片描述

for data_sample in rpn_data_samples:
     data_sample.gt_instances.labels = \
         torch.zeros_like(data_sample.gt_instances.labels)
         
将每个 data_sample 中的目标实例的标签信息都设置为零,因为作为rpn网络只要进行二分类任务

在这里插入图片描述

rpn_losses, rpn_results_list = self.rpn_head.loss_and_predict(
                x, rpn_data_samples, proposal_cfg=proposal_cfg)  详见1.1.1

计算 RPN 模型的损失并生成建议框的预测结果

在这里插入图片描述

keys = rpn_losses.keys()
for key in list(keys):
    if 'loss' in key and 'rpn' not in key:
        rpn_losses[f'rpn_{key}'] = rpn_losses.pop(key)
losses.update(rpn_losses)

在这里插入图片描述

roi_losses = self.roi_head.loss(x, rpn_results_list,
                                        batch_data_samples)
losses.update(roi_losses)

在这里插入图片描述


1.1 loss_and_predict函数(base_dense_head.py)
def loss_and_predict(
        self,
        x: Tuple[Tensor],
        batch_data_samples: SampleList,
        proposal_cfg: Optional[ConfigDict] = None
    ) -> Tuple[dict, InstanceList]:

在这里插入图片描述

 outputs = unpack_gt_instances(batch_data_samples)
 (batch_gt_instances, batch_gt_instances_ignore,
  batch_img_metas) = outputs

将批量数据中的目标实例信息和图像元信息提取出来,以便后续的处理和分析

在这里插入图片描述

在这里插入图片描述

outs = self(x)

输入预测网络预测cls_score, bbox_pred, centerness三个属性

在这里插入图片描述

loss_inputs = outs + (batch_gt_instances, batch_img_metas,
                      batch_gt_instances_ignore)

loss_inputs 元组将用于计算损失函数,其中包括模型的输出 outs、目标实例信息 batch_gt_instances、
图像元信息 batch_img_metas 以及忽略的目标实例信息 batch_gt_instances_ignore

在这里插入图片描述

losses = self.loss_by_feat(*loss_inputs) 详见1.1.1

计算损失值

在这里插入图片描述

predictions = self.predict_by_feat(
            *outs, batch_img_metas=batch_img_metas, cfg=proposal_cfg) 详见1.1.2

生成目标检测的预测成果

在这里插入图片描述


1.1.1 loss_by_feat函数(fcos_head.py)
def loss_by_feat(
        self,
        cls_scores: List[Tensor],
        bbox_preds: List[Tensor],
        centernesses: List[Tensor],
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        batch_gt_instances_ignore: OptInstanceList = None
    ) -> Dict[str, Tensor]:

在这里插入图片描述

assert len(cls_scores) == len(bbox_preds) == len(centernesses)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]

获取每一个特征图的尺寸

在这里插入图片描述

all_level_points = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=bbox_preds[0].dtype,
            device=bbox_preds[0].device)

组成先验框的点

在这里插入图片描述

labels, bbox_targets = self.get_targets(all_level_points,
                                                batch_gt_instances) 详见1.1.1.1

在这里插入图片描述
在这里插入图片描述

flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
            for cls_score in cls_scores
        ]
flatten_bbox_preds = [
    bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
    for bbox_pred in bbox_preds
]
flatten_centerness = [
    centerness.permute(0, 2, 3, 1).reshape(-1)
    for centerness in centernesses
]
flatten_cls_scores = torch.cat(flatten_cls_scores)
flatten_bbox_preds = torch.cat(flatten_bbox_preds)
flatten_centerness = torch.cat(flatten_centerness)

在这里插入图片描述

flatten_labels = torch.cat(labels)
flatten_bbox_targets = torch.cat(bbox_targets)
# repeat points to align with bbox_preds
flatten_points = torch.cat(
    [points.repeat(num_imgs, 1) for points in all_level_points])

在这里插入图片描述
在这里插入图片描述

bg_class_ind = self.num_classes
pos_inds = ((flatten_labels >= 0)
            & (flatten_labels < bg_class_ind)).nonzero().reshape(-1)

将背景类的索引设置为 num_classes
用于获取正样本的索引

在这里插入图片描述

num_pos = torch.tensor(
            len(pos_inds), dtype=torch.float, device=bbox_preds[0].device)
num_pos = max(reduce_mean(num_pos), 1.0)

计算了正样本的数量,并且将其转换为张量 num_pos,后使用 reduce_mean 函数来计算正样本数量的平均值,并使用 max 函数确保这个平均值至少为1.0

在这里插入图片描述

loss_cls = self.loss_cls(
            flatten_cls_scores, flatten_labels, avg_factor=num_pos)

使用分类损失函数 self.loss_cls 来计算分类损失
pos_bbox_preds = flatten_bbox_preds[pos_inds]
pos_centerness = flatten_centerness[pos_inds]
pos_bbox_targets = flatten_bbox_targets[pos_inds]
pos_centerness_targets = self.centerness_target(pos_bbox_targets)
        # centerness weighted iou loss
centerness_denorm = max(
    reduce_mean(pos_centerness_targets.sum().detach()), 1e-6)

通过索引 pos_inds 从之前展平的张量中提取了正样本对应的
	边界框预测、中心度预测、边界框目标和中心度目标

在这里插入图片描述

if len(pos_inds) > 0:
    pos_points = flatten_points[pos_inds]
    pos_decoded_bbox_preds = self.bbox_coder.decode(
        pos_points, pos_bbox_preds)
    pos_decoded_target_preds = self.bbox_coder.decode(
        pos_points, pos_bbox_targets)
    loss_bbox = self.loss_bbox(
        pos_decoded_bbox_preds,
        pos_decoded_target_preds,
        weight=pos_centerness_targets,
        avg_factor=centerness_denorm)
    loss_centerness = self.loss_centerness(
        pos_centerness, pos_centerness_targets, avg_factor=num_pos)

如果存在正样本
	所有点坐标中提取正样本的点坐标
	使用边界框编码器解码正样本的边界框预测和目标
	计算边界框损失,使用解码后的边界框预测和目标值
	计算中心度损失

在这里插入图片描述
在这里插入图片描述

 return dict(
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            loss_centerness=loss_centerness)

1.1.1.1 get_targets函数
def get_targets(
            self, points: List[Tensor], batch_gt_instances: InstanceList
    ) -> Tuple[List[Tensor], List[Tensor]]:

在这里插入图片描述

assert len(points) == len(self.regress_ranges)
num_levels = len(points)
# expand regress ranges to align with points
expanded_regress_ranges = [
    points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
        points[i]) for i in range(num_levels)
        ]
        
将回归范围扩展以与点对齐

在这里插入图片描述

concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
concat_points = torch.cat(points, dim=0)
num_points = [center.size(0) for center in points]

连接所有级别的点和回归范围
存储每个级别中的点的数量

在这里插入图片描述
在这里插入图片描述

labels_list, bbox_targets_list = multi_apply(			详见1.1.1.2
       self._get_targets_single,
       batch_gt_instances,
       points=concat_points,
       regress_ranges=concat_regress_ranges,
       num_points_per_lvl=num_points)

将 _get_target_single 方法应用到多个图像上,以计算每个图像中的回归、分类和角度目标

在这里插入图片描述
在这里插入图片描述

labels_list = [labels.split(num_points, 0) for labels in labels_list]
bbox_targets_list = [
    bbox_targets.split(num_points, 0)
    for bbox_targets in bbox_targets_list
]

将目标分割为每个图像的每个级别

在这里插入图片描述
在这里插入图片描述

concat_lvl_labels = []
concat_lvl_bbox_targets = []
for i in range(num_levels):
    concat_lvl_labels.append(
        torch.cat([labels[i] for labels in labels_list]))
    bbox_targets = torch.cat(
        [bbox_targets[i] for bbox_targets in bbox_targets_list])
    if self.norm_on_bbox:
        bbox_targets = bbox_targets / self.strides[i]
    concat_lvl_bbox_targets.append(bbox_targets)
return concat_lvl_labels, concat_lvl_bbox_targets

连接每个级别中每个图像的目标
返回包含连接后的每个级别的分类标签、回归目标

在这里插入图片描述


1.1.1.2 _get_targets_single函数
def _get_targets_single(
            self, gt_instances: InstanceData, points: Tensor,
            regress_ranges: Tensor,
            num_points_per_lvl: List[int]) -> Tuple[Tensor, Tensor]:

在这里插入图片描述

num_points = points.size(0)
num_gts = len(gt_instances)
gt_bboxes = gt_instances.bboxes
gt_labels = gt_instances.labels

在这里插入图片描述

if num_gts == 0:
    return gt_labels.new_full((num_points,), self.num_classes), \
           gt_bboxes.new_zeros((num_points, 4))
areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
            gt_bboxes[:, 3] - gt_bboxes[:, 1])
areas = areas[None].repeat(num_points, 1)

在这里插入图片描述

regress_ranges = regress_ranges[:, None, :].expand(
            num_points, num_gts, 2)
gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
xs, ys = points[:, 0], points[:, 1]
xs = xs[:, None].expand(num_points, num_gts)
ys = ys[:, None].expand(num_points, num_gts)

对参数进行扩展

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

left = xs - gt_bboxes[..., 0]
right = gt_bboxes[..., 2] - xs
top = ys - gt_bboxes[..., 1]
bottom = gt_bboxes[..., 3] - ys
bbox_targets = torch.stack((left, top, right, bottom), -1)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

 if self.center_sampling:
     # condition1: inside a `center bbox`
     radius = self.center_sample_radius
     center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2
     center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2
     center_gts = torch.zeros_like(gt_bboxes)
     stride = center_xs.new_zeros(center_xs.shape)
     lvl_begin = 0
     
     for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl):
         lvl_end = lvl_begin + num_points_lvl
         stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius
         lvl_begin = lvl_end

     x_mins = center_xs - stride
     y_mins = center_ys - stride
     x_maxs = center_xs + stride
     y_maxs = center_ys + stride
     center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0],
                                      x_mins, gt_bboxes[..., 0])
     center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1],
                                      y_mins, gt_bboxes[..., 1])
     center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2],
                                      gt_bboxes[..., 2], x_maxs)
     center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3],
                                      gt_bboxes[..., 3], y_maxs)

     cb_dist_left = xs - center_gts[..., 0]
     cb_dist_right = center_gts[..., 2] - xs
     cb_dist_top = ys - center_gts[..., 1]
     cb_dist_bottom = center_gts[..., 3] - ys
     center_bbox = torch.stack(
         (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1)
     inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0
 else:
     # condition1: inside a gt bbox
     inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

max_regress_distance = bbox_targets.max(-1)[0]
inside_regress_range = (
    (max_regress_distance >= regress_ranges[..., 0])
    & (max_regress_distance <= regress_ranges[..., 1]))

在这里插入图片描述
在这里插入图片描述

areas[inside_gt_bbox_mask == 0] = INF
areas[inside_regress_range == 0] = INF
min_area, min_area_inds = areas.min(dim=1)

在这里插入图片描述

在这里插入图片描述

labels = gt_labels[min_area_inds]
labels[min_area == INF] = self.num_classes  # set as BG
bbox_targets = bbox_targets[range(num_points), min_area_inds]

return labels, bbox_targets

在这里插入图片描述
在这里插入图片描述


1.1.2 predict_by_feat函数(base_dense_head.py)
 def predict_by_feat(self,
                    cls_scores: List[Tensor],
                    bbox_preds: List[Tensor],
                    score_factors: Optional[List[Tensor]] = None,
                    batch_img_metas: Optional[List[dict]] = None,
                    cfg: Optional[ConfigDict] = None,
                    rescale: bool = False,
                    with_nms: bool = True) -> InstanceList:

在这里插入图片描述

assert len(cls_scores) == len(bbox_preds)

if score_factors is None:
    # e.g. Retina, FreeAnchor, Foveabox, etc.
    with_score_factors = False
else:
    # e.g. FCOS, PAA, ATSS, AutoAssign, etc.
    with_score_factors = True
    assert len(cls_scores) == len(score_factors)

num_levels = len(cls_scores)

在这里插入图片描述

 featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
 mlvl_priors = self.prior_generator.grid_priors(
     featmap_sizes,
     dtype=cls_scores[0].dtype,
     device=cls_scores[0].device)

获取每个尺度层级的特征图大小
生成每个尺度层级上的先验框坐标

在这里插入图片描述在这里插入图片描述

result_list = []

for img_id in range(len(batch_img_metas)):
     img_meta = batch_img_metas[img_id]
     cls_score_list = select_single_mlvl(
         cls_scores, img_id, detach=True)
     bbox_pred_list = select_single_mlvl(
         bbox_preds, img_id, detach=True)
     if with_score_factors:
         score_factor_list = select_single_mlvl(
             score_factors, img_id, detach=True)
     else:
         score_factor_list = [None for _ in range(num_levels)]

提取当前图片的类别得分、边界框预测、和中心度预测

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

results = self._predict_by_feat_single(
                cls_score_list=cls_score_list,
                bbox_pred_list=bbox_pred_list,
                score_factor_list=score_factor_list,
                mlvl_priors=mlvl_priors,
                img_meta=img_meta,
                cfg=cfg,
                rescale=rescale,
                with_nms=with_nms)
result_list.append(results)

通过单张图片的特征和预测,获取边界框信息			详见1.1.2.1
return result_list

在这里插入图片描述


1.1.2.1 _predict_by_feat_single函数(base_dense_head.py)
def _predict_by_feat_single(self,
                          cls_score_list: List[Tensor],
                          bbox_pred_list: List[Tensor],
                          score_factor_list: List[Tensor],
                          mlvl_priors: List[Tensor],
                          img_meta: dict,
                          cfg: ConfigDict,
                          rescale: bool = False,
                          with_nms: bool = True) -> InstanceData:

在这里插入图片描述

if score_factor_list[0] is None:
    # e.g. Retina, FreeAnchor, etc.
    with_score_factors = False
else:
    # e.g. FCOS, PAA, ATSS, etc.
    with_score_factors = True
cfg = self.test_cfg if cfg is None else cfg
cfg = copy.deepcopy(cfg)
img_shape = img_meta['img_shape']
nms_pre = cfg.get('nms_pre', -1)

mlvl_bbox_preds = []
mlvl_valid_priors = []
mlvl_scores = []
mlvl_labels = []
if with_score_factors:
    mlvl_score_factors = []
else:
    mlvl_score_factors = None

在这里插入图片描述
在这里插入图片描述

 for level_idx, (cls_score, bbox_pred, score_factor, priors) in \
         enumerate(zip(cls_score_list, bbox_pred_list,
                       score_factor_list, mlvl_priors)):

     assert cls_score.size()[-2:] == bbox_pred.size()[-2:]

     dim = self.bbox_coder.encode_size
     bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, dim)
     if with_score_factors:
         score_factor = score_factor.permute(1, 2,
                                             0).reshape(-1).sigmoid()
     cls_score = cls_score.permute(1, 2,
                                   0).reshape(-1, self.cls_out_channels)
     if self.use_sigmoid_cls:
         scores = cls_score.sigmoid()
     else:
         # remind that we set FG labels to [0, num_class-1]
         # since mmdet v2.0
         # BG cat_id: num_class
         scores = cls_score.softmax(-1)[:, :-1]

对每一层特征做处理,这里以第一层100 * 136 作为演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

score_thr = cfg.get('score_thr', 0)

results = filter_scores_and_topk(
    scores, score_thr, nms_pre,
    dict(bbox_pred=bbox_pred, priors=priors))

使用score_thr和topk过滤结果

在这里插入图片描述

scores, labels, keep_idxs, filtered_results = results

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

bbox_pred = filtered_results['bbox_pred']
priors = filtered_results['priors']

在这里插入图片描述
在这里插入图片描述

 if with_score_factors:
                score_factor = score_factor[keep_idxs]

	mlvl_bbox_preds.append(bbox_pred)
	mlvl_valid_priors.append(priors)
	mlvl_scores.append(scores)
	mlvl_labels.append(labels)

在这里插入图片描述

至此循环结束

bbox_pred = torch.cat(mlvl_bbox_preds)
priors = cat_boxes(mlvl_valid_priors)
bboxes = self.bbox_coder.decode(priors, bbox_pred, max_shape=img_shape)

在这里插入图片描述
在这里插入图片描述

results = InstanceData()
results.bboxes = bboxes
results.scores = torch.cat(mlvl_scores)
results.labels = torch.cat(mlvl_labels)
if with_score_factors:
    results.score_factors = torch.cat(mlvl_score_factors)

使用InstanceData类进行封装

在这里插入图片描述

return self._bbox_post_process(
            results=results,
            cfg=cfg,
            rescale=rescale,
            with_nms=with_nms,
            img_meta=img_meta)	详见1.1.2.2

1.1.2.2 _bbox_post_process函数(base_dense_head.py)
def _bbox_post_process(self,
                       results: InstanceData,
                       cfg: ConfigDict,
                       rescale: bool = False,
                       with_nms: bool = True,
                       img_meta: Optional[dict] = None) -> InstanceData:

在这里插入图片描述

 if rescale:
     assert img_meta.get('scale_factor') is not None
     scale_factor = [1 / s for s in img_meta['scale_factor']]
     results.bboxes = scale_boxes(results.bboxes, scale_factor)

 if hasattr(results, 'score_factors'):
     # TODO: Add sqrt operation in order to be consistent with
     #  the paper.
     score_factors = results.pop('score_factors')
     results.scores = results.scores * score_factors
if cfg.get('min_bbox_size', -1) >= 0:
    w, h = get_box_wh(results.bboxes)
    valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size)
    if not valid_mask.all():
        results = results[valid_mask]

检测允许的最小边界框的尺寸

在这里插入图片描述
在这里插入图片描述

 if with_nms and results.bboxes.numel() > 0:
     bboxes = get_box_tensor(results.bboxes)
     det_bboxes, keep_idxs = batched_nms(bboxes, results.scores,
                                         results.labels, cfg.nms)
     results = results[keep_idxs]
     # some nms would reweight the score, such as softnms
     results.scores = det_bboxes[:, -1]
     results = results[:cfg.max_per_img]

 return results
 
进行NMS操作并且返回结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


ROI部分代码

2.1 loss函数(standard_roi_head.py)

def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
             batch_data_samples: List[DetDataSample]) -> dict:

在这里插入图片描述

assert len(rpn_results_list) == len(batch_data_samples)
outputs = unpack_gt_instances(batch_data_samples)
batch_gt_instances, batch_gt_instances_ignore, _ = outputs

在这里插入图片描述

num_imgs = len(batch_data_samples)
sampling_results = []
for i in range(num_imgs):
    # rename rpn_results.bboxes to rpn_results.priors
    rpn_results = rpn_results_list[i]
    rpn_results.priors = rpn_results.pop('bboxes')

    assign_result = self.bbox_assigner.assign(
        rpn_results, batch_gt_instances[i],
        batch_gt_instances_ignore[i])
    sampling_result = self.bbox_sampler.sample(
        assign_result,
        rpn_results,
        batch_gt_instances[i],
        feats=[lvl_feat[i][None] for lvl_feat in x])
    sampling_results.append(sampling_result)

计算 batch_data_samples 列表的长度,即批次中包含的图像数量。
遍历批次中的每张图像:
	获取第 i 张图像的 RPN
	RPN 检测结果中的 'bboxes' 键的值赋给 'priors' 键
	使用一个 bbox_assigner(通常是负责分配正负样本的组件)来执行分配操作
	使用 bbox_sampler(通常是负责采样正负样本的组件)来执行采样操作

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

 losses = dict()
 # bbox head loss
 if self.with_bbox:
     bbox_results = self.bbox_loss(x, sampling_results)    		详见2.1.1
     losses.update(bbox_results['loss_bbox'])

计算 bbox 损失
if self.with_mask:
    mask_results = self.mask_loss(x, sampling_results,
                                  bbox_results['bbox_feats'],
                                  batch_gt_instances)
    losses.update(mask_results['loss_mask'])

return losses

2.1.1 bbox_loss函数(standard_roi_head.py)
def bbox_loss(self, x: Tuple[Tensor],
                  sampling_results: List[SamplingResult]) -> dict:

在这里插入图片描述

rois = bbox2roi([res.priors for res in sampling_results])

在这里插入图片描述

bbox_results = self._bbox_forward(x, rois)

在这里插入图片描述

bbox_loss_and_target = self.bbox_head.loss_and_target(
            cls_score=bbox_results['cls_score'],
            bbox_pred=bbox_results['bbox_pred'],
            rois=rois,
            sampling_results=sampling_results,
            rcnn_train_cfg=self.train_cfg)			详见2.1.3

bbox_results.update(loss_bbox=bbox_loss_and_target['loss_bbox'])
return bbox_results

在这里插入图片描述


2.1.2 _bbox_forward函数(standard_roi_head.py)
def _bbox_forward(self, x: Tuple[Tensor], rois: Tensor) -> dict:

在这里插入图片描述

bbox_feats = self.bbox_roi_extractor(
            x[:self.bbox_roi_extractor.num_inputs], rois)

在这里插入图片描述

 if self.with_shared_head:
     bbox_feats = self.shared_head(bbox_feats)
 cls_score, bbox_pred = self.bbox_head(bbox_feats)

在这里插入图片描述

bbox_results = dict(
            cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats)
return bbox_results

在这里插入图片描述


2.1.2.1 bbox_roi_extractor函数(single_level_roi_extractor.py)
def forward(self,
            feats: Tuple[Tensor],
             rois: Tensor,
             roi_scale_factor: Optional[float] = None):

在这里插入图片描述

 rois = rois.type_as(feats[0])
 out_size = self.roi_layers[0].output_size
 num_levels = len(feats)
 roi_feats = feats[0].new_zeros(
     rois.size(0), self.out_channels, *out_size)

将 RoIs 的数据类型转换为与 feats[0](即特征图)相同的数据类型
获取感兴趣区域 (RoI) 操作的输出尺寸 out_size
获取特征金字塔的级别数
创建一个全零的特征张量 roi_feats

在这里插入图片描述

 if torch.__version__ == 'parrots':
     roi_feats.requires_grad = True

 if num_levels == 1:
     if len(rois) == 0:
         return roi_feats
     return self.roi_layers[0](feats[0], rois)
target_lvls = self.map_roi_levels(rois, num_levels)

if roi_scale_factor is not None:
    rois = self.roi_rescale(rois, roi_scale_factor)

在这里插入图片描述

  for i in range(num_levels):
      mask = target_lvls == i
      inds = mask.nonzero(as_tuple=False).squeeze(1)
      if inds.numel() > 0:
          rois_ = rois[inds]
          roi_feats_t = self.roi_layers[i](feats[i], rois_)
          roi_feats[inds] = roi_feats_t
      else:
          # Sometimes some pyramid levels will not be used for RoI
          # feature extraction and this will cause an incomplete
          # computation graph in one GPU, which is different from those
          # in other GPUs and will cause a hanging error.
          # Therefore, we add it to ensure each feature pyramid is
          # included in the computation graph to avoid runtime bugs.
          roi_feats += sum(
              x.view(-1)[0]
              for x in self.parameters()) * 0. + feats[i].sum() * 0.
  return roi_feats

遍历特征金字塔中的不同级别的特征图:
	创建一个布尔掩码 mask,用于筛选出与当前级别 i 相匹配的 RoIs
	通过 nonzero 方法找到满足 mask 的 RoIs 的索引
	检查当前级别是否有与之相关的 RoIs:
		从原始 RoIs rois 中提取当前级别 i 的 RoIs
		将当前级别 i 的特征图 feats[i] 和相应的 RoIs rois_ 传递给 RoI 池化层
		将获得的 RoIs 特征 roi_feats_t 存储到总体 RoI 特征张量 roi_feats 中

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


2.1.2.2 map_roi_levels函数(single_level_roi_extractor.py)
def map_roi_levels(self, rois: Tensor, num_levels: int) -> Tensor:
    """Map rois to corresponding feature levels by scales.

    - scale < finest_scale * 2: level 0
    - finest_scale * 2 <= scale < finest_scale * 4: level 1
    - finest_scale * 4 <= scale < finest_scale * 8: level 2
    - scale >= finest_scale * 8: level 3

    Args:
        rois (Tensor): Input RoIs, shape (k, 5).
        num_levels (int): Total level number.

    Returns:
        Tensor: Level index (0-based) of each RoI, shape (k, )
    """
    scale = torch.sqrt(
        (rois[:, 3] - rois[:, 1]) * (rois[:, 4] - rois[:, 2]))
    target_lvls = torch.floor(torch.log2(scale / self.finest_scale + 1e-6))
    target_lvls = target_lvls.clamp(min=0, max=num_levels - 1).long()
    return target_lvls

计算每个 RoI 的尺度。这里的尺度计算是通过 RoI 的高度和宽度相乘来获得的
通过对 RoI 的尺度进行对数计算,然后除以 self.finest_scale 并取下限,得到一个表示 RoIs 所在级别的浮点数 target_lvls
对 target_lvls 进行裁剪,确保它在合适的级别范围内。最小值为 0,最大值为 num_levels - 1
返回一个包含每个 RoI 所在级别索引的张量,该索引是从 0 到 num_levels - 1 的整数,用于指示每个 RoI 应映射到哪个特征金字塔级别

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


2.1.3 loss_and_target函数(bbox_head.py)
def loss_and_target(self,
                    cls_score: Tensor,
                    bbox_pred: Tensor,
                    rois: Tensor,
                    sampling_results: List[SamplingResult],
                    rcnn_train_cfg: ConfigDict,
                    concat: bool = True,
                    reduction_override: Optional[str] = None) -> dict:

在这里插入图片描述

 cls_reg_targets = self.get_targets(
            sampling_results, rcnn_train_cfg, concat=concat)

在这里插入图片描述

losses = self.loss(
            cls_score,
            bbox_pred,
            rois,
            *cls_reg_targets,
            reduction_override=reduction_override)

return dict(loss_bbox=losses, bbox_targets=cls_reg_targets)

2.1.3.1 loss函数(bbox_head.py)
def loss(self,
         cls_score: Tensor,
         bbox_pred: Tensor,
         rois: Tensor,
         labels: Tensor,
         label_weights: Tensor,
         bbox_targets: Tensor,
         bbox_weights: Tensor,
         reduction_override: Optional[str] = None) -> dict:

在这里插入图片描述

losses = dict()

if cls_score is not None:
    avg_factor = max(torch.sum(label_weights > 0).float().item(), 1.)
    if cls_score.numel() > 0:
        loss_cls_ = self.loss_cls(
            cls_score,
            labels,
            label_weights,
            avg_factor=avg_factor,
            reduction_override=reduction_override)
        if isinstance(loss_cls_, dict):
            losses.update(loss_cls_)
        else:
            losses['loss_cls'] = loss_cls_
        if self.custom_activation:
            acc_ = self.loss_cls.get_accuracy(cls_score, labels)
            losses.update(acc_)
        else:
            losses['acc'] = accuracy(cls_score, labels)

计算分类损失和精度
  if bbox_pred is not None:
      bg_class_ind = self.num_classes
      # 0~self.num_classes-1 are FG, self.num_classes is BG
      pos_inds = (labels >= 0) & (labels < bg_class_ind)
      # do not perform bounding box regression for BG anymore.
      if pos_inds.any():
          if self.reg_decoded_bbox:
              # When the regression loss (e.g. `IouLoss`,
              # `GIouLoss`, `DIouLoss`) is applied directly on
              # the decoded bounding boxes, it decodes the
              # already encoded coordinates to absolute format.
              bbox_pred = self.bbox_coder.decode(rois[:, 1:], bbox_pred)
              bbox_pred = get_box_tensor(bbox_pred)
          if self.reg_class_agnostic:
              pos_bbox_pred = bbox_pred.view(
                  bbox_pred.size(0), -1)[pos_inds.type(torch.bool)]
          else:
              pos_bbox_pred = bbox_pred.view(
                  bbox_pred.size(0), self.num_classes,
                  -1)[pos_inds.type(torch.bool),
                      labels[pos_inds.type(torch.bool)]]
          losses['loss_bbox'] = self.loss_bbox(
              pos_bbox_pred,
              bbox_targets[pos_inds.type(torch.bool)],
              bbox_weights[pos_inds.type(torch.bool)],
              avg_factor=bbox_targets.size(0),
              reduction_override=reduction_override)
      else:
          losses['loss_bbox'] = bbox_pred[pos_inds].sum()

  return losses

计算出正样本的索引
如果存在正样本:
	是否应在已编码的边界框上应用回归损失。如果为真,将已编码的坐标解码为绝对格式
根据是否是类别无关的回归
计算边界框回归损失 loss_bbox

在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值