本地部署(1) - 免费开源GPT-4All,离线无需GPU!

1. 安装

  1. 进入官网 https://gpt4all.io/index.html

  2. 下载与自己操作系统匹配的安装包

  3. 安装即可【注意安装期间需要保持网络】

  4. 修改一些设置

找到设置

2. 模型选择

1. 先了解有哪些模型,这里官方有给出模型的测试结果,可以重点看看加粗的“高分”模型

2. 光顾着“高分”也不行,需要看看自己电脑能不能带的动,实测我电脑配置是4800H核显+16G运行内存,勉强能够运行16G的模型,下面有我分别测试的8G模型和16G模型效果。

8G模型测试的效果

有点点离谱,哈哈

 3. 还需要注意是否允许商业化,在官网也有标识

4. 个人建议的模型是第一个(我也只使用过两个模型🤣)

官网下载的链接:【建议使用下载工具下载,我是使用JDownloader 2】

https://gpt4all.io/models/gguf/mistral-7b-openorca.Q4_0.gguf

https://gpt4all.io/models/gguf/nous-hermes-llama2-13b.Q4_0.gguf

3. 模型安装

模型安装非常简单,直接将下载好模型放入下面的文件夹即可

如果点击Browser没有打开到指定页面,复制地址,在文件夹中打开

4. 完成安装

重启软件后,当你显示的界面跟我一样(模型可以不一样)恭喜你就安装好了,快去试试吧!

 


 

小小的体验感受:“高分”的16G大模型Hermes编写代码不太行,有不少细节上的错误,也可能是我的问法不对

8G大模型Mistral OpenOrca也不太行,但感觉比Hermes要号一点

<think>嗯,用户问的是GPT4ALL,我需要先回忆一下相关的信息。记得GPT4ALL是一个开源项目,可能和本地运行的语言模型有关。首先,我得确定它的基本定义,然后看看它有什么特点,比如是否支持离线使用,模型大小,还有应用场景。 用户可能想知道GPT4ALL和ChatGPT的区别,所以需要对比一下,比如是否需要联网、数据隐私方面的优势。另外,用户可能对技术细节感兴趣,比如模型架构是基于LLaMA还是别的,支持哪些平台,比如Windows、macOS、Linux。 还要考虑用户的使用场景,是不是开发者或者普通用户,是否需要编程接口。可能需要提到它的开源协议,比如允许商业使用,这对开发者来说很重要。另外,应用场景部分要举例子,比如智能客服、教育辅助,这样更具体。 需要检查有没有混淆GPT4ALL和OpenAI的GPT-4,避免用户误解。同时,确保提到的信息准确,比如模型参数数量、支持的语言、硬件要求。最后,提醒用户注意模型可能存在的局限性,比如生成内容的准确性,建议在关键任务中验证信息。 结构方面,按照定义、特点、应用场景、使用方式的顺序来组织,保持逻辑清晰。使用中文口语化表达,避免技术术语过多,必要时解释术语。确保每个部分简洁明了,用户能快速抓住重点。</think>GPT4ALL 是一个开源项目,其核心目标是让用户能在个人电脑本地免费运行强大的语言模型。以下是从5个角度为你解析: 1. **技术定位** - 支持离线运行:无需联网,直接本地部署 - 基于LLaMA/MPT架构微调:使用超百万条对话数据训练 - 轻量化模型:基础版本仅需4GB内存,支持消费级GPU 2. **核心优势对比** | 特性 | GPT4ALL | ChatGPT | |-------------|---------------------|-------------------| | 运行环境 | 本地设备 | 云端服务器 | | 数据隐私 | 完全自主控制 | 需信任服务商 | | 响应速度 | 依赖本地硬件 | 高速网络依赖 | | 定制能力 | 完全开源可修改 | 封闭系统 | | 使用成本 | 免费(除硬件) | 订阅制/API收费 | 3. **典型应用场景** - 隐私敏感场景:医疗咨询/法律文件处理 - 教育辅助:离线作业辅导(如Python代码调试) - 内容创作:本地化的小说大纲生成 - 企业应用:定制化客服系统部署 4. **使用方式** ```python # 示例安装命令(需先安装Python环境) pip install gpt4all # 基础调用代码 from gpt4all import GPT4All model = GPT4All("orca-mini-3b-gguf2-q4_0.gguf") output = model.generate("量子计算的核心原理是?", max_tokens=200) print(output) ``` 5. **注意事项** - 模型精度:7B/13B参数版本回答质量低于云端大模型 - 硬件要求:推荐至少16GB内存+RTX3060显卡 - 语言支持:主要英语能力较强,中文需额外微调 - 法律风险:需遵守模型原始训练数据的许可协议 最新进展:2023年11月更新的2.8.7版本已支持Windows端DirectML加速,在AMD显卡上效率提升40%。对于开发者,项目提供C/C++/Python多语言API接口,支持商业场景二次开发。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值