GPT-2 的 Transformer Block 设计与基础 Transformer 的比较

随着深度学习在自然语言处理领域的迅猛发展,Transformer 架构逐渐成为了语言模型的主流结构。自从 Vaswani 等人提出的基础 Transformer 在《Attention is All You Need》论文中首次亮相以来,各种改进版本相继问世。GPT-2 是其中一个重要的里程碑,其 Transformer Block 设计在细节上与基础 Transformer 有一些重要的差异,尤其是在 Layer Normalization 的位置上做了不同的安排。本文将探讨这两种架构的区别及其对模型性能的影响。

基础 Transformer 的设计

在原始的基础 Transformer 中,模型主要由两个关键的子层组成:多头自注意力层(Multi-Head Self-Attention)前馈神经网络(Feed-Forward Network)。每个子层在设计时都通过了一个 残差连接(Residual Connection)层归一化(Layer Normalization) 过程。这种设计的具体步骤如下:

  1. 输入数据首先经过 Multi-Head Self-Attention 或 Feed-Forward 子层的计算。
  2. 然后,将子层的输出与输入数据进行残差连接,即将输入与输出相加。
  3. 最后,对这个残差连接的结果进行 Layer Normalization。

这一过程可以用如下公式表示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机智的小神仙儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值