CycleGAN Loss函数分析

CycleGAN Loss函数

CycleGAN是GAN发展过程中里程碑式的框架,时至今日在轻量化任务和落地框架中依旧是主流方案之一。
CycleGAN的Loss函数是其能实现在无监督条件下实现良好、稳定效果的精髓所在,其总体Loss函数可以表示为:
L t o t a l = L D + L G + λ c y c l e L c y c l e + λ i d e n t i t y L i d e n t i t y \mathcal{L}_{total}=\mathcal{L}_D+\mathcal{L}_G+\lambda_{cycle}\mathcal{L}_{cycle}+\lambda_{identity}\mathcal{L}_{identity} Ltotal=LD+LG+λcycleLcycle+λidentityLidentity

Adversarial Loss

对于 X → Y X\rightarrow Y XY可以表示为:
L D = E y ∼ p data ( y ) [ log ⁡ D Y ( y ) ] + E x ∼ p data ( x ) [ log ⁡ ( 1 − D Y ( G ( x ) ) ) ] \mathcal{L}_{\text{D}} = \mathbb{E}_{y \sim p_{\text{data}}(y)} [\log D_Y(y)] + \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log(1 - D_Y(G(x)))] LD=Eypdata(y)[logDY(y)]+Expdata(x)[log(1DY(G(x)))]
上述是论文中的表达方式,也是GAN中最常见也是最经典的判别器损失结构,这里我们将遵循官方代码中的表达而不是论文中的方式。
对于A域与B域的数据,当 A → B A\rightarrow B AB有:

### GAN损失函数的Python实现 在生成对抗网络(GANs)中,通常采用不同的损失函数来优化判别器和生成器。对于判别器而言,二元交叉熵损失(Binary Cross Entropy Loss, BCE)是一种常见的选择;而对于生成器,则可能使用均方误差(Mean Squared Error, MSE),或者基于Wasserstein距离(WD)定义的损失函数[^1]。 下面展示了一个简单的PyTorch框架下的GAN损失函数实现: #### 判别器损失函数 ```python import torch.nn as nn criterion = nn.BCELoss() def discriminator_loss(real_output, fake_output): real_labels = torch.ones((real_output.size(0), 1)).cuda() fake_labels = torch.zeros((fake_output.size(0), 1)).cuda() error_real = criterion(real_output, real_labels) error_fake = criterion(fake_output, fake_labels) total_error = error_real + error_fake return total_error / 2 ``` 此部分代码实现了针对真实样本与伪造样本分别计算其对应的标签,并通过`nn.BCELoss()`方法计算实际输出与预期之间的差异,最后取平均作为总的判别器损失。 #### 生成器损失函数 ```python def generator_loss(fake_output): valid_labels = torch.ones((fake_output.size(0), 1)).cuda() gen_error = criterion(fake_output, valid_labels) return gen_error ``` 这里假设生成的目标是让模型相信所有的假数据都是真实的,因此给定全为1的理想化目标向量用于衡量生成图像的质量。 除了上述标准形式外,在某些特定应用场景下还可以尝试其他类型的损失函数组合方式以获得更好的效果。例如当涉及到连续分布间的比较时可以考虑引入Wassertein距离等替代方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值