数字图像处理-第四周-理论课

第四章频率域的图像增强

包括傅立叶变换、频率域的平滑、锐化滤波

  • 掌握傅立叶变换的基本原理,频域低通滤波和锐化滤波的原理和用法
  • 理解空间滤波器和频率滤波器的联系与区别

傅里叶变换

傅里叶级数:
f ( t ) = c 0 + c 1 e j w 1 t + c 2 e j w 2 t + . . . = ∑ n = − ∞ n = + ∞ c n e j w n t c n = f r a c 1 T ∫ − T / 2 T / 2 f ( t ) e j w n t n = 0 , ± 1 , ± 2 , . . . f(t)=c_{0}+c_{1}e^{jw_{1}t}+c_{2}e^{jw_{2}t}+...=\sum_{n=-\infty}^{n=+\infty}c_{n}e^{jw_{n}t}\\c_{n}=frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{jw_{n}t}\quad n=0,±1,±2,... f(t)=c0+c1ejw1t+c2ejw2t+...=n=n=+cnejwntcn=frac1TT/2T/2f(t)ejwntn=0,±1,±2,...

w n = 2 π n T ∫ − T / 2 T / 2 e j w i t e − j w j t = T δ i j w_{n}=\frac{2\pi n}{T} \quad \int_{-T/2}^{T/2}e^{jw_{i}t}e^{-jw_{j}t}=T\delta _{ij} wn=T2πnT/2T/2ejwitejwjt=Tδij
在这里插入图片描述
连续变量函数的傅里叶变换:
F μ = ∫ − ∞ ∞ f ( t ) e − j 2 π μ t d t 傅里叶变换 f ( t ) = ∫ − ∞ ∞ F ( μ ) e j 2 π μ t d μ 反傅里叶变换 F_{\mu}=\int_{-\infty}^{\infty}f(t)e^{-j2\pi \mu t}dt \quad \text{傅里叶变换}\\f(t)=\int_{-\infty}^{\infty}F(\mu)e^{j2\pi\mu t}d\mu \quad \text{反傅里叶变换} Fμ=f(t)ej2πμtdt傅里叶变换f(t)=F(μ)ej2πμtdμ反傅里叶变换
μ = 1 T \mu = \frac{1}{T} μ=T1是频率

在这里插入图片描述
一维空间傅里叶变换:
F μ = ∫ − ∞ + ∞ f ( x ) e − j 2 π μ x d x 傅里叶变换 f ( x ) = ∫ − ∞ + ∞ F ( μ ) e j 2 π μ x d μ 反傅里叶变换 F_{\mu}=\int_{-\infty}^{+\infty}f(x)e^{-j2\pi \mu x}dx \quad \text{傅里叶变换}\\f(x)=\int_{-\infty}^{+\infty}F(\mu)e^{j2\pi\mu x}d\mu \quad \text{反傅里叶变换} Fμ=+f(x)ej2πμxdx傅里叶变换f(x)=+F(μ)ej2πμxdμ反傅里叶变换
μ = 1 λ \mu = \frac{1}{\lambda} μ=λ1是波数,表示在单位长度内的波的个数

注意:物理中关于角频率、波数的惯用约定:

  • 时序信号,角频率 ω = 2 π T , ϕ = ω t \omega=\frac{2\pi}{T}, \phi=\omega t ω=T2π,ϕ=ωt
  • 静止波形,波数 k = 2 π λ , ϕ = k x k=\frac{2\pi}{\lambda},\phi=kx k=λ2π,ϕ=kx
  • 运动的正弦波 ϕ = k x − w t \phi=kx-wt ϕ=kxwt

一维离散傅里叶变换:
取样将连续函数变为离散序列
取样间隔: Δ T \Delta T ΔT Δ x \Delta x Δx
设N个离散序列 f ( 0 ) , f ( 1 ) , . . . , f ( N − 1 ) {f(0),f(1),...,f(N-1)} f(0),f(1),...,f(N1),x为离散实变量,u为离散频率变量,可将离散傅里叶变换表示为
F ( u ) = ∑ x = 0 N − 1 f ( x ) e − j 2 π u x / N 其 中 u = 0 , 1 , . . . , N − 1 离 散 傅 里 叶 变 换 f ( x ) = ∑ u = 0 N − 1 F ( u ) e j 2 π u x / N 其 中 x = 0 , 1 , 2 , . . . , N − 1 离 散 反 傅 里 叶 变 换 \begin{aligned}F(u)=\sum_{x=0}^{N-1}f(x)e^{-j2\pi ux/N}\quad &其中u=0,1,...,N-1 \quad 离散傅里叶变换\\ f(x)=\sum_{u=0}^{N-1}F(u)e^{j2\pi ux/N} \quad &其中x=0,1,2,...,N-1\quad 离散反傅里叶变换\end{aligned} F(u)=x=0N1f(x)ej2πux/Nf(x)=u=0N1F(u)ej2πux/Nu=0,1,...,N1x=0,1,2,...,N1

e − j 2 π u x / N = c o s 2 π u x − j s i n 2 π u x e^{-j2\pi ux/N}=cos2\pi ux-jsin2\pi ux ej2πux/N=cos2πuxjsin2πux
取样间隔和频率间隔的关系
取样间隔 Δ x \Delta x Δx决定了频率总跨度 Ω \Omega Ω
由采样定理决定 Ω = 1 Δ x \Omega=\frac{1}{\Delta x} Ω=Δx1
Δ u = Ω N \Delta u=\frac{\Omega}{N} Δu=NΩ
→ Δ u Δ x = 1 N \rightarrow\Delta u\Delta x=\frac{1}{N} ΔuΔx=N1
基函数 e − j 2 π u Δ u x Δ x = e − j 2 π u x / N e^{-j2\pi u\Delta u x\Delta x}=e^{-j2\pi ux/N} ej2πuΔuxΔx=ej2πux/N

功率谱、振幅谱、相位谱
傅里叶变换是复函数,可以写为
F ( u ) = R ( u ) + i I ( u ) = ∣ F ( u ) ∣ e j ϕ ( u ) F(u)=R(u)+iI(u)=|F(u)|e^{j\phi(u)} F(u)=R(u)+iI(u)=F(u)ejϕ(u)
其中,傅里叶频谱: ∣ F ( u ) ∣ = R 2 ( u ) + I 2 ( u ) |F(u)|=\sqrt{R^2(u)+I^2(u)} F(u)=R2(u)+I2(u)
相位谱: ϕ ( u ) = a r c t a n I ( u ) R ( u ) \phi(u)=arctan\frac{I(u)}{R(u)} ϕ(u)=arctanR(u)I(u)
功率谱: P ( u ) = ∣ F ( u ) ∣ 2 P(u)=|F(u)|^2 P(u)=F(u)2
二维离散傅里叶变换
F ( u , v ) = 1 N 2 ∑ x = 0 N − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u x + v y ) / N , u , v = 0 , 1 , 2 , . . , N − 1 f ( x , y ) = ∑ u = 0 N − 1 ∑ v = 0 N − 1 F ( u , v ) e j 2 π ( u x + v y ) / N , x , y = 0 , 1 , 2 , . . , N − 1 F(u,v)=\frac{1}{N^2}\sum_{x=0}^{N-1}\sum_{y=0}^{N-1}f(x,y)e^{-j2\pi(ux+vy)/N},\quad u,v=0,1,2,..,N-1 \\f(x,y)=\sum_{u=0}^{N-1}\sum_{v=0}^{N-1}F(u,v)e^{j2\pi(ux+vy)/N},\quad x,y=0,1,2,..,N-1 F(u,v)=N21x=0N1y=0N1f(x,y)ej2π(ux+vy)/N,u,v=0,1,2,..,N1f(x,y)=u=0N1v=0N1F(u,v)ej2π(ux+vy)/N,x,y=0,1,2,..,N1
其中,傅里叶频谱: ∣ F ( u , v ) ∣ = R 2 ( u , v ) + I 2 ( u , v ) |F(u,v)|=\sqrt{R^2(u,v)+I^2(u,v)} F(u,v)=R2(u,v)+I2(u,v)
相位谱: ϕ ( u , v ) = a r c t a n I ( u , v ) R ( u , v ) \phi(u,v)=arctan\frac{I(u,v)}{R(u,v)} ϕ(u,v)=arctanR(u,v)I(u,v)
能量谱: E ( u , v ) = R 2 ( u , v ) + I 2 ( u , v ) E(u,v)=R^2(u,v)+I^2(u,v) E(u,v)=R2(u,v)+I2(u,v)

由于在傅里叶变换中 F ( u , v ) F(u,v) F(u,v) u , v u,v u,v衰减太快,直接显示高频项只能看到一两个峰,其余什么都看不清楚。为了符合图像处理中常用图像来显示结果的惯例,通常用 D ( u , v ) D(u,v) D(u,v)来代替,以弥补只显示 ∣ F ( u , v ) ∣ |F(u,v)| F(u,v)不够清楚这一缺陷
D ( u , v ) = l o g ( 1 + ∣ F ( u , v ) ∣ ) D(u,v)=log(1+|F(u,v)|) D(u,v)=log(1+F(u,v))
在这里插入图片描述
相位谱的重要性:
在这里插入图片描述

离散傅里叶变换的基函数
在这里插入图片描述

傅里叶的性质
可分离性:
F ( u , v ) = 1 N 2 ∑ x ∑ y f ( x , y ) e − j 2 π ( u x + v y ) / N = 1 N ∑ x f ( x , y ) e − j 2 π u x / N 1 N ∑ y f ( x , y ) e − j 2 π v y / N = \begin{aligned}F(u,v)=\frac{1}{N^2}\sum_{x}\sum_{y}f(x,y)e^{-j2\pi (ux+vy)/N}\\ =\frac{1}{N}\sum_{x}f(x,y)e^{-j2\pi ux/N} \frac{1}{N}\sum_{y}f(x,y)e^{-j2\pi vy/N}\\ =\end{aligned} F(u,v)=N21xyf(x,y)ej2π(ux+vy)/N=N1xf(x,y)ej2πux/NN1yf(x,y)ej2πvy/N=
2-D Fourier变换可由连续2次运用1-D Fourier变换来实现
F(x,v)可由沿f(x,y)的每一列求变换得到
然后再对F(x,v)每一行求变换
变换域的周期性 T = N T=N T=N
F ( u , v ) = F ( u + N , v ) = F ( u , v + N ) = F ( u + N , v + N ) F(u,v)=F(u+N,v)=F(u,v+N)=F(u+N,v+N) F(u,v)=F(u+N,v)=F(u,v+N)=F(u+N,v+N)
只需根据在任一个周期里的N个值就可以从 F ( u , v ) F(u,v) F(u,v)得到 f ( x , y ) f(x,y) f(x,y)
对称共轭性:
F ( u , v ) = F ∗ ( − u , − v ) , ∣ F ( u , v ) ∣ = ∣ F ( − u , − v ) ∣ F(u,v)=F^{*}(-u,-v),\quad |F(u,v)|=|F(-u,-v)| F(u,v)=F(u,v),F(u,v)=F(u,v)
只需要一半的变换就可以将整个变换完全确定
平移性:
f ( x − x 0 , y − y 0 ) ⇔ F ( u , v ) e − j 2 π ( u x 0 + v y 0 ) / N ∣ F ( u , v ) e − j 2 π ( u x 0 + v y 0 ) / N ∣ = ∣ F ( u , v ) ∣ f(x-x_{0},y-y_{0})\Leftrightarrow F(u,v)e^{-j2\pi (ux_{0}+vy_{0})/N}\\ |F(u,v)e^{-j2\pi (ux_{0}+vy_{0})/N}|=|F(u,v)| f(xx0,yy0)F(u,v)ej2π(ux0+vy0)/NF(u,v)ej2π(ux0+vy0)/N=F(u,v)
图像平移不影响频谱
注意:这种平移从图像的角度相当于循环移动。例如往右移动3列。则右侧移出去的3列被填补到左侧空出的三列上。
f ( x , y ) e j 2 π ( u 0 x + v 0 y ) / N ⇔ F ( u − u 0 , v − v 0 ) f(x,y)e^{j2\pi (u_{0}x+v_{0}y)/N}\Leftrightarrow F(u-u_{0},v-v_{0}) f(x,y)ej2π(u0x+v0y)/NF(uu0,vv0)
u 0 = v 0 = N 2 u_{0}=v_{0}=\frac{N}{2} u0=v0=2N
e j 2 π ( u 0 x + v 0 y ) / N = e j 2 π ( x + y ) = ( − 1 ) x + y f ( x , y ) ( − 1 ) x + y ⇔ F ( u − N 2 , v − N 2 ) e^{j2\pi (u_{0}x+v_{0}y)/N}=e^{j2\pi(x+y)}=(-1)^{x+y}\\ f(x,y)(-1)^{x+y}\Leftrightarrow F(u-\frac{N}{2},v-\frac{N}{2}) ej2π(u0x+v0y)/N=ej2π(x+y)=(1)x+yf(x,y)(1)x+yF(u2N,v2N)
在这里插入图片描述
在这里插入图片描述

为了使得频谱的原点(0频点)移到中心,有两种做法:
1.在正向Fourier变换前,先对数据进行预处理
2.或者正向Fourier变换后,将结果上下等分再左右等分,得到四部分,然后对角对换

旋转性质:
借助极坐标
x = r c o s θ , y = r s i n θ , u = w c o s ϕ , v = w s i n ϕ f ( r , θ + θ 0 ) ⇔ F ( w , ϕ + θ 0 ) x=rcos\theta ,\quad y=rsin\theta,\quad u=wcos\phi,\quad v=wsin\phi\\ f(r,\theta+\theta_{0})\Leftrightarrow F(w,\phi+\theta_{0}) x=rcosθ,y=rsinθ,u=wcosϕ,v=wsinϕf(r,θ+θ0)F(w,ϕ+θ0)
f ( x , y ) f(x,y) f(x,y)旋转一个角度对应于将其傅里叶变换 F ( u , v ) F(u,v) F(u,v)也旋转相同的角度
F ( x , y ) F(x,y) F(x,y)旋转一个角度对应于将其反傅里叶变换 f ( x , y ) f(x,y) f(x,y)也旋转相同的角度

分配律:
F [ f 1 ( x , y ) + f 2 ( x , y ) ] = F [ f 1 ( x , y ) ] + F [ f 2 ( x , y ) ] F[f_{1}(x,y)+f_{2}(x,y)]=F[f_{1}(x,y)]+F[f_{2}(x,y)] F[f1(x,y)+f2(x,y)]=F[f1(x,y)]+F[f2(x,y)]
尺度变换:
设a,b是两标量
a f ( x , y ) ⇔ a F ( u , v ) f ( a x + b y ) ⇔ 1 ∣ a b ∣ F ( u a , v b ) af(x,y)\Leftrightarrow aF(u,v)\\ f(ax+by)\Leftrightarrow \frac{1}{|ab|}F(\frac{u}{a},\frac{v}{b}) af(x,y)aF(u,v)f(ax+by)ab1F(au,bv)
平均值:
f ( x , y ) ‾ = 1 N 2 ∑ x = 0 N − 1 ∑ y = 0 N − 1 f ( x , y ) = F ( 0 , 0 ) \overline{f(x,y)}=\frac{1}{N^2}\sum_{x=0}^{N-1}\sum_{y=0}^{N-1}f(x,y)=F(0,0) f(x,y)=N21x=0N1y=0N1f(x,y)=F(0,0)

卷积

1-D连续卷积定义:
f ( x ) ∗ g ( x ) = ∫ − ∞ ∞ f ( z ) g ( x − z ) d z f(x)*g(x)=\int_{-\infty}^{\infty}f(z)g(x-z)dz f(x)g(x)=f(z)g(xz)dz
卷积定理:
f ( x ) ∗ g ( x ) ⇔ F ( u ) G ( u ) f ( x ) g ( x ) ⇔ F ( u ) ∗ G ( u ) f(x)*g(x)\Leftrightarrow F(u)G(u)\\ f(x)g(x)\Leftrightarrow F(u)*G(u) f(x)g(x)F(u)G(u)f(x)g(x)F(u)G(u)
2-D连续卷积定义:
f ( x , y ) ∗ g ( x , y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( p , q ) g ( x − p , y − q ) d p d q f(x,y)*g(x,y)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(p,q)g(x-p,y-q)dpdq f(x,y)g(x,y)=f(p,q)g(xp,yq)dpdq
离散形式的二维循环卷积和对应的傅里叶变换
f ( x , y ) ∗ h ( x , y ) = ∑ m = 0 M − 1 ∑ n = 0 N − 1 f ( m , n ) h ( x − m , y − n ) f ( x , y ) ∗ h ( x , y ) ⇔ F ( u , v ) H ( u , v ) f(x,y)*h(x,y)=\sum_{m=0}^{M-1}\sum_{n=0}^{N-1}f(m,n)h(x-m,y-n)\\ f(x,y)*h(x,y)\Leftrightarrow F(u,v)H(u,v) f(x,y)h(x,y)=m=0M1n=0N1f(m,n)h(xm,yn)f(x,y)h(x,y)F(u,v)H(u,v)
避免卷积定理的数据缠绕问题:
基于卷积定理,卷积均存在频域的对应滤波器。
然后,考虑到这种对应关系时,对原始图像和卷积核进行傅里叶变换时需要避免缠绕效应。
在这里插入图片描述
扩充原始图像和卷积核,用0填充扩充的区域

卷积和相关:
f ( x ) ∘ g ( x ) = ∫ − ∞ ∞ f ( a ) g ( x + a ) d a f ( x , y ) ∘ g ( x , y ) ⇔ F ( u , v ) G ∗ ( u , v ) f ( x , y ) g ∗ ( x , y ) ⇔ F ( u , v ) ∘ G ( u , v ) f(x)\circ g(x)=\int_{-\infty}^{\infty}f(a)g(x+a)da\\ f(x,y)\circ g(x,y)\Leftrightarrow F(u,v)G^{*}(u,v)\\ f(x,y)g^{*}(x,y)\Leftrightarrow F(u,v)\circ G(u,v) f(x)g(x)=f(a)g(x+a)daf(x,y)g(x,y)F(u,v)G(u,v)f(x,y)g(x,y)F(u,v)G(u,v)

频域滤波(频域增强)

频域增强基本原理:通过改变变换域的某些分量从而改变输出图像的频率分量达到图像增强的目的。
理论基础:卷积定理
g ( x , y ) = h ( x , y ) ∗ f ( x , y ) G ( u , v ) = H ( u , v ) F ( u , v ) g ( x , y ) = F − 1 [ G ( u , v ) ] g(x,y)=h(x,y)*f(x,y)\\ G(u,v)=H(u,v)F(u,v)\\ g(x,y)=F^{-1}[G(u,v)] g(x,y)=h(x,y)f(x,y)G(u,v)=H(u,v)F(u,v)g(x,y)=F1[G(u,v)]

频域滤波器原理:

  • 计算需增强图像的傅里叶变换
  • 设计转移函数/传递函数/滤波函数,并与图像的傅里叶变换相乘
  • 计算反傅里叶变换获得增强图像

图像中各个细节对应的频率成分:
高频部分:边缘、噪声
低频部分:直流部分、慢变化

依据:

实用的频域滤波步骤:
回忆: f ( x , y ) ( − 1 ) x + y ⇔ F ( u − N 2 , v − N 2 ) f(x,y)(-1)^{x+y}\Leftrightarrow F(u-\frac{N}{2},v-\frac{N}{2}) f(x,y)(1)x+yF(u2N,v2N)
1.给定一幅大小为M×N的输入图像f(x,y)将图像扩展到P×Q,典型的,设P=2M,Q=2N
2.对扩充对出来的部分用0填充,新的图像大小为P×Q,记为 f p ( x , y ) f_{p}(x,y) fp(x,y)
3.计算DFT,得到 F ( u , v ) = D F T [ f p ( x , y ) ( − 1 ) x + y ] F(u,v)=DFT[f_{p}(x,y)(-1)^{x+y}] F(u,v)=DFT[fp(x,y)(1)x+y]
4.生成一个实的,对称的滤波函数H(u,v),其大小为P×Q,中心在 ( P 2 , Q 2 ) (\frac{P}{2},\frac{Q}{2}) (2P,2Q)处,用矩阵元素对应相乘的方式得到
G ( u , v ) = F ( u , v ) H ( u , v ) G(u,v)=F(u,v)H(u,v) G(u,v)=F(u,v)H(u,v)
5.然后通过IDFT变换得到图像
g p ( x , y ) = { R e [ D F T − 1 G ( u , v ) ] } ( − 1 ) x + y g_{p}(x,y)=\{Re[DFT^{-1}G(u,v)]\}(-1)^{x+y} gp(x,y)={Re[DFT1G(u,v)]}(1)x+y
6.从 g p ( x , y ) g_{p}(x,y) gp(x,y)中提取左上角的M×N区域,得到最终结果
在这里插入图片描述
在这里插入图片描述

空间域和频域的对应关系:
在实践中,往往宁愿使用较小的滤波器模板(空域)来实现卷积滤波,因为在硬件实现中比较快。
然而,滤波的概念在频域更直观。因此,可以在频域里设计滤波器,然后计算它的IDFT得到空间域的滤波器。
h ( x , y ) ⇔ H ( u , v ) 空 间 域 滤 波 器 ( 卷 积 核 ) ⇔ 频 域 滤 波 器 \begin{aligned}h(x,y)&\Leftrightarrow H(u,v)\\空间域滤波器(卷积核)&\Leftrightarrow 频域滤波器\end{aligned} h(x,y)H(u,v)
空间域和频域对等的滤波器的滤波效果相同

低通滤波器:
D 0 D_{0} D0为截止频率
D ( u , v ) D(u,v) D(u,v)是从点(u,v)到频率平面原点的距离 D ( u , v ) = ( u 2 + v 2 ) 1 / 2 D(u,v)=(u^2+v^2)^{1/2} D(u,v)=(u2+v2)1/2
在这里插入图片描述

高斯滤波器:
H ( u ) = A e − u 2 2 σ 2 ⇔ h ( u ) = 2 π σ A e − 2 π 2 σ 2 x 2 高 斯 低 通 滤 波 器 ⇔ 高 斯 低 通 卷 积 核 H(u)=Ae^{-\frac{u^2}{2\sigma^2}}\Leftrightarrow h(u)=\sqrt{2\pi}\sigma A e^{-2\pi^2 \sigma^2 x^2}\\ 高斯低通滤波器\Leftrightarrow 高斯低通卷积核 H(u)=Ae2σ2u2h(u)=2π σAe2π2σ2x2
在这里插入图片描述

理想低通滤波器:低于某个频率完全不受影响 D 0 D_{0} D0为截止频率
低频通过,主要含能部分保持
H ( u , v ) = { 1  如  D ( u , v ) ⩽ D 0 0  如  D ( u , v ) > D 0 H(u, v)=\left\{\begin{array}{ll} 1 & \text { 如 } D(u, v) \leqslant D_{0} \\ 0 & \text { 如 } D(u, v)>D_{0} \end{array}\right. H(u,v)={10  D(u,v)D0  D(u,v)>D0

理想低通滤波器的“振铃”现象:

  • 在2-D图像上表现为一系列同心圆环,圆环半径反比于截止频率
  • 截止频率越小,模糊越厉害。振铃现象越明显,滤波器移除的功率占总功率占比越大。
  • 高斯滤波图像也没有振铃现象,但平滑效果不如巴特沃斯滤波器
  • 巴特沃斯滤波器的振铃效应得到抑制
  • 在需要严格控制低频和高频之间的截止频率时,巴特沃斯滤波器更合适,然而额外控制滤波器剖面曲线的代价就是可能会产生振铃效应。

巴特沃斯低通滤波器:
H ( u , v ) = 1 1 + [ D ( u , v ) / D 0 ] 2 n H(u,v)=\frac{1}{1+[D(u,v)/D_{0}]^{2n}} H(u,v)=1+[D(u,v)/D0]2n1
低通巴特沃斯滤波器中高低频过渡平滑,振铃效应不明显。
H最大值降到50%即在 D ( u , v ) = D 0 D(u,v)=D_{0} D(u,v)=D0 H ( u , v ) = 1 2 H(u,v)=\frac{1}{2} H(u,v)=21

高通滤波器:
在这里插入图片描述
在这里插入图片描述

频域带通、带阻、陷波滤波器:
在这里插入图片描述
在这里插入图片描述

同态滤波器:
若照度为 i ( x , y ) i(x,y) i(x,y),反射系数 r ( x , y ) r(x,y) r(x,y)
f ( x , y ) = i ( x , y ) r ( x , y ) f(x,y)=i(x,y)r(x,y) f(x,y)=i(x,y)r(x,y)
若物体受到照度明暗不均的时候,图像上对应照度暗的部分,其细节就较难辨别
同态滤波:消除不均匀照度的影响而又不损失图像细节。
依据:图像的灰度由照射分量和反射分量合成。反射分量反应图像内容,随图像细节不同在空间上作快速变化。照射分量在空间上通常均具有缓慢变化的性质。
反射分量的频谱落在空间高频区域。
照度分量的频谱落在空间低频区域。

步骤:
1.两边取对数:
l n f ( x , y ) = l n i ( x , y ) + l n r ( x , y ) lnf(x,y)=lni(x,y)+lnr(x,y) lnf(x,y)=lni(x,y)+lnr(x,y)
2.两边取傅氏变换:
F ( u , v ) = I ( u , v ) + R ( u , v ) F(u,v)=I(u,v)+R(u,v) F(u,v)=I(u,v)+R(u,v)
3.用一频域函数 H ( u , v ) H(u,v) H(u,v)处理 F ( u , v ) F(u,v) F(u,v)
H ( u , v ) F ( u , v ) = H ( u , v ) I ( u , v ) + H ( u , v ) R ( u , v ) H(u,v)F(u,v)=H(u,v)I(u,v)+H(u,v)R(u,v) H(u,v)F(u,v)=H(u,v)I(u,v)+H(u,v)R(u,v)
4.反变换到空域:
h f ( x , y ) = h i ( x , y ) + h r ( x , y ) h_{f}(x,y)=h_{i}(x,y)+h_{r}(x,y) hf(x,y)=hi(x,y)+hr(x,y)
5.两边取指数:
g ( x , y ) = e ∣ h f ( x , y ) ∣ = e h i ( x , y ) e h r ( x , y ) g(x,y)=e^{|h_{f}(x,y)|}=e^{h_{i}(x,y)}e^{h_{r}(x,y)} g(x,y)=ehf(x,y)=ehi(x,y)ehr(x,y)
特点:能消除乘性噪声,能同时压缩图像的整体动态范围和增加图像中相邻区域间的对比度
在这里插入图片描述

使用ln将反射分量和照度分量分开,再对图像进行滤波
滤波函数设计为一个倒高斯滤波器的形状,直观上想,可以减弱低频部分(照明)的影响,强调高频部分(反射),使得纹理部分更突出。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值