代码结构
整体代码结构如下图所示:
点击run.py文件,直接运行。可以手动调节参数以及更换模型
1数据集
本文采用的数据集属于清华NLP组提供的THUCNews新闻文本分类数据集的一个子集(原始的数据集大约74万篇文档,训练起来需要花较长的时间)。数据集请自行到THUCTC:一个高效的中文文本分类工具包下载,请遵循数据提供方的开源协议。
下载的数据放入THUCNews/data目录中。本次训练使用了其中的10个分类,每个分类6500条,总共65000条新闻数据。
类别如下:
体育, 财经, 房产, 家居, 教育, 科技, 时尚, 时政, 游戏, 娱乐
数据集划分如下:
- 训练集:5000*10
- 验证集:500*10
- 测试集:1000*10
从原始数据集生成子集的过程请参看helper下的两个脚本。其中copy_data.sh用于从每个分类拷贝6500个文件,cnews_group.py用于将多个文件整合到一个文件中。执行该文件后,得到三个数据文件:
- train.txt: 训练集(50000条)
- dev.txt: 验证集(5000条)
- test.txt: 测试集(10000条)
测试集示例:
2预处理
调用加载数据的函数返回预处理的数据
def build_vocab(file_path, tokenizer, max_size, min_freq):
vocab_dic = {
}
with open(file_path, 'r', encoding='UTF-8') as f:
for line in tqdm(f):
lin = line.strip()
if not lin:
continue
content = lin.split('\t')[0]
for word in tokenizer(content):
vocab_dic[word] = vocab_dic.get(word, 0) + 1
vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[:max_size]
vocab_dic = {
word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
vocab_dic.update({
UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
return vocab_dic
def build_dataset(config, ues_word):
if ues_word:
tokenizer = lambda x: x.split(' ') # 以空格隔开,word-level
else:
tokenizer = lambda x: [y for y in x] # char-level
if os.path.exists(config.vocab_path):
vocab = pkl.load(open(config.vocab_path, 'rb'))
else:
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
pkl.dump(vocab, open(config.vocab_path