机器学习
文章平均质量分 85
laluneX
这个作者很懒,什么都没留下…
展开
-
机器学习——k-近邻算法、K-均值算法、PCA、异常检测算法、上限分析
K Nearest Neighbor算法⼜叫KNN算法,这个算法是机器学习⾥⾯⼀个⽐较经典的算法如果⼀个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的⼤多数属于某⼀个类别,则该样本也属于这个类别。d=∑i=1n(x1i−x2i)2d = \sqrt{\sum_{i=1}^n(x_{1i}- x_{2i})^2}d=∑i=1n(x1i−x2i)2二、K-均值算法(K Means)K-均值算法是一种聚类算法,同时也是非监督学习的算法。它首先随机生成几个聚类中心,然后在每次递归时实现簇分原创 2022-07-11 10:42:08 · 1217 阅读 · 0 评论 -
机器学习——当预测结果误差很大时怎么办等多种问题的解决方案
TestError=1mtest∑i=1mtesterr(hθ(x),y)TestError=\frac{1}{m_{test}}\sum_{i=1}^{m_{test}}err(h_{\theta}(x),y)TestError=mtest1i=1∑mtesterr(hθ(x),y)若训练集的Jtest(θ)J_{test}(\theta)Jtest(θ)很高,而Jcv(θ)≈Jtest(θ)J_{cv}(\theta){\approx}J_{test}(\theta)Jcv(θ)≈Jtes原创 2022-07-10 20:59:55 · 7364 阅读 · 0 评论 -
matplotlib图形中文乱码设置后无效的解决办法
若无效,可能的原因是找不到simhei.ttf这个字体,所以只需要添加字体然后改后的代码为:原创 2022-06-22 16:18:57 · 1421 阅读 · 2 评论 -
机器学习——seaborn
Matplotlib虽然已经是比较优秀的绘图库了,但是它有个今人头疼的问题,那就是API使用过于复杂,它里面有上千个函数和参数,属于典型的那种可以用它做任何事,却无从下手。Seaborn基于Matplotlib核心库进行了更高级的API封装,可以轻松地画出更漂亮的图形,而Seaborn的漂亮主要体现在配色更加舒服,以及图形元素的样式更加细腻。seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, color=None)通常,采用直方图原创 2022-06-20 15:57:29 · 2106 阅读 · 1 评论 -
机器学习——pandas
Pandas中一共有三种数据结构,分别为:Series、DataFrame和MultiIndex(老版本中叫Panel )。其中Series是一维数据结构,DataFrame是二维的表格型数据结构,MultiIndex是三维的数据结构。Series是一个类似于一维数组的数据结构,它能够保存任何类型的数据,比如整数、字符串、浮点数等,主要由一组数据和与之相关的索引两部分构成。pd.Series(data=None, index=None, dtype=None)②series的属性为了更方便地操作Ser原创 2022-06-19 16:41:58 · 3641 阅读 · 1 评论 -
机器学习——numpy
numpy专门针对ndarray的操作和运算进行了设计,所以该类型的存储效率和输入输出性能远优于Python中的嵌套列表,数组越大,Numpy的优势就越明显。从现有数组中生成生成固定范围的数组正态分布正态分布是具有两个参数μ和σ的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ是此随机变量的方差,所以正态分布记作N(μ,σ )。其中μ决定了其位置,其标准差σ决定了分布的胖瘦。且当μ = 0,σ = 1时的正态分布是标准正态分布。σ越小分布则越瘦高,σ越大原创 2022-06-16 11:28:43 · 1321 阅读 · 2 评论 -
机器学习——概述、matpoltlib
机器学习概要,matplotlib原创 2022-06-14 15:57:42 · 360 阅读 · 0 评论 -
机器学习——supervised和unsupervised learning、linear regression、Cost function和Loss function、梯度下降、矩阵
一、supervised learning与unsupervised learning监督学习是利用数据的特征和标签来训练一个模型,使模型能够对任意给定的输入,对其相应的输出做出一个好的预测,即得出一个所谓的正确答案。监督学习可以分为两大类:回归分析和分类,二者之间的区别在于回归分析针对的是连续数据,而分类针对的是离散数据。非监督学习为直接对数据进行建模,训练数据中只有特征没有标签,而且事先并不知道输入数据对应的输出结果是什么,最终结果为多个结构。。其中包含聚类分析与特征变量关联等算法。即类似于将一个数原创 2022-06-02 14:44:08 · 1043 阅读 · 0 评论