【GAMES101笔记速查——Lecture 15 Ray Tracing3】

目录

1. 辐射度量学概念

1.1 辐射能量energy

1.2 单位辐射能量power

1.3 单位立体角上的能量intensity

1.4 立体角Solid Angle

1.5 微分立体角

1.6 微分面积上的能量 (W/平方米)irradiance

       1.6.1 点光源在传播过程中关于距离平方的衰减

1.7 在单位立体角且在单位投影面积上的能量radiance

2. BRDF(Bidirectional Reflectance Distribution Fuction)

2.1 双向反射分布函数BRDF是什么

       2.1.1 BRDF作用

       2.1.2 BRDF定义

2.2 反射方程

2.3 渲染方程

3. 概率论回顾(Probability)

3.1 离散随机变量及其分布

3.2 连续随机变量及其分布


1. 辐射度量学概念

1.1 辐射能量energy

图形学中不常用

1.2 单位辐射能量power

这个是图形学中常用的,单位时间内的能量

1.3 单位立体角上的能量intensity

1.4 立体角Solid Angle

球心指向单位球的表面一部分区域面积,这部分区域面积除以半径平方就是立体角。

描述一个空间中的角度

1.5 微分立体角

用两个角度变量(\Theta \Phi)就可以确定球面上的一个点,而在这两个角度上各变化一个很小的角度,这个很小角度对应的立体角就是微分立体角。变量并不是对球面的均匀划分,靠近赤道和靠近极点的微分立体角不同,和角度θ有关。

(微小面积看作长方形,长和宽是对应圆形上的一条弧,弧长 = 弧度 × 半径)

1.6 微分面积上的能量 (W/平方米)irradiance

irradiance = power÷面积,这个面积area必须要与光线垂直

1.6.1 点光源在传播过程中关于距离平方的衰减

离点光源一定距离的单位面积接受到的能量可以用irradiance来表示。

这里intensity没有变,irradiance在衰减。

1.7 在单位立体角且在单位投影面积上的能量radiance

这个概念描述的是光在一条直线上传播的能量

1.一个面可能会往各个方向辐射能量,这里研究向某一个方向的能量

2.能辐射的能量与本身面的大小有关,面越大辐射出的光线越多

与前两个物理量的联系

radiance是单位角上的irradiance

radiance是单位面积上的intensity

irradiance和radiance的关系

irradiance是一个小区域收到的能量

radiance只考虑这个小区域的,从某个方向进来的能量

他们之间就差了一个方向性


2. BRDF(Bidirectional Reflectance Distribution Fuction)

2.1 双向反射分布函数BRDF是什么

       2.1.1 BRDF作用

        告诉我们从某个方向入射进光线,这束光线反射到不同方向的能量到底是多少。

        可以理解为,光线打到一个表面的某一个位置(微小面积dA),能量先被吸收,然后被发到另一些四面八方的方向去。那它往某一个方向(微小立体角dω)辐射的能量是多少?

      2.1.2 BRDF定义

     定义BRDF:一个函数,描述了

    

     这个函数就定义了光线和物体是如何作用的,也就是定义了物体的材质。

2.2 反射方程

由此我们可以推导出更通用的光线传播规律:

对于一个着色点,每个方向的入射光线对出射光线的贡献,相加起来就是出射光线的radiance。

这个积分值就是从某个观测点看到的关于着色点的radiance。

综上,反射方程描述了:

从某个观测点看到的关于着色点的radiance是多少?也就是,某根出射光线的radiance是多少?

💡     某根出射光线的radiance = 每个方向上的入射光线对出射光线的贡献相加

                                                = 对 “某一根入射光线对出射光线的贡献”在半球域内积分

此时会有一个问题:

反射方程需要考虑能到达某个点的所有光线,可是所有的光线不止包括光源能够到达的光线,还包括其他物体的反射光线。那这个过程就是递归的

2.3 渲染方程

如果一个物体会自发光?

那么除了其他光源照亮和其他物体反射的部分,还需要考虑自身的发光项。我们就从反射方程推出一个更通用的渲染方程,它可以概括所有在物体表面上的光线传播。在公式上,把自发光项加进去就行了:

从某个方向上看,某个着色点的radiance =

它自己发出的radiance + 其他入射光源经过BRDF的Radiance。

对于一个点光源的方程:

对于多个点光源:加起来

面光源??点光源的集合,将面光源所占据的立体角积分

其他物体的反射光??考虑物体覆盖的立体角,然后计算这一些立体角的光线,和面光源差不多。

这个问题就可以理解为递归的:跨时代的创造

Render Equation

渲染是个递归的过程

通过一个简化的式子来表示

更简化的式子

L=E+KL

我们这么写的目的是为了:解出L

也就是:解渲染方程

做一个数学变换

这种形式,是光线关于弹射次数的一种分解。

光线弹射一次:直接光照(阴影等)

光线弹射两次及以上:间接光照(反射等)

所有弹射次数的结果加起来就叫做全局光照

光栅化一般只做自发光部分和直接光照的部分,间接光照难做。

光线追踪比较好做间接光照的部分

两张直观的例子

直接光照vs加上弹射两次的间接光照

如果做无限次的弹射会怎么样? 答:会收敛到一个确定的亮度。

那么我们如何解全局光照?先说一些基础知识


3. 概率论回顾(Probability)

3.1 离散随机变量及其分布

随机变量X,随机变量的分布

随机变量以不同的概率取不同的值

概率是非负的

所有概率之和=1

期望:不断取随机变量,并取他们的平均

在连续情况下,如何描述随机变量和它的分布?

3.2 连续随机变量及其分布

概率密度函数(Probability Distribution Function ,PDF)

概率密度函数本身的纵坐标并不是概率,而是一小段横坐标和它对应的函数之间类似于梯形的面积才是概率。

随机变量X作为自变量,求函数Y的期望。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值