目录
1.6 微分面积上的能量 (W/平方米)irradiance
1.7 在单位立体角且在单位投影面积上的能量radiance
2. BRDF(Bidirectional Reflectance Distribution Fuction)
1. 辐射度量学概念
1.1 辐射能量energy
图形学中不常用
1.2 单位辐射能量power
这个是图形学中常用的,单位时间内的能量
1.3 单位立体角上的能量intensity
1.4 立体角Solid Angle
球心指向单位球的表面一部分区域面积,这部分区域面积除以半径平方就是立体角。
描述一个空间中的角度
1.5 微分立体角
用两个角度变量()就可以确定球面上的一个点,而在这两个角度上各变化一个很小的角度,这个很小角度对应的立体角就是微分立体角。变量并不是对球面的均匀划分,靠近赤道和靠近极点的微分立体角不同,和角度θ有关。
(微小面积看作长方形,长和宽是对应圆形上的一条弧,弧长 = 弧度 × 半径)
1.6 微分面积上的能量 (W/平方米)irradiance
irradiance = power÷面积,这个面积area必须要与光线垂直
1.6.1 点光源在传播过程中关于距离平方的衰减
离点光源一定距离的单位面积接受到的能量可以用irradiance来表示。
这里intensity没有变,irradiance在衰减。
1.7 在单位立体角且在单位投影面积上的能量radiance
这个概念描述的是光在一条直线上传播的能量
1.一个面可能会往各个方向辐射能量,这里研究向某一个方向的能量
2.能辐射的能量与本身面的大小有关,面越大辐射出的光线越多
与前两个物理量的联系
radiance是单位角上的irradiance
radiance是单位面积上的intensity
irradiance和radiance的关系
irradiance是一个小区域收到的能量
radiance只考虑这个小区域的,从某个方向进来的能量
他们之间就差了一个方向性
2. BRDF(Bidirectional Reflectance Distribution Fuction)
2.1 双向反射分布函数BRDF是什么
2.1.1 BRDF作用
告诉我们从某个方向入射进光线,这束光线反射到不同方向的能量到底是多少。
可以理解为,光线打到一个表面的某一个位置(微小面积dA),能量先被吸收,然后被发到另一些四面八方的方向去。那它往某一个方向(微小立体角dω)辐射的能量是多少?
2.1.2 BRDF定义
定义BRDF:一个函数,描述了
这个函数就定义了光线和物体是如何作用的,也就是定义了物体的材质。
2.2 反射方程
由此我们可以推导出更通用的光线传播规律:
对于一个着色点,每个方向的入射光线对出射光线的贡献,相加起来就是出射光线的radiance。
这个积分值就是从某个观测点看到的关于着色点的radiance。
综上,反射方程描述了:
从某个观测点看到的关于着色点的radiance是多少?也就是,某根出射光线的radiance是多少?
💡 某根出射光线的radiance = 每个方向上的入射光线对出射光线的贡献相加
= 对 “某一根入射光线对出射光线的贡献”在半球域内积分
此时会有一个问题:
反射方程需要考虑能到达某个点的所有光线,可是所有的光线不止包括光源能够到达的光线,还包括其他物体的反射光线。那这个过程就是递归的。
2.3 渲染方程
如果一个物体会自发光?
那么除了其他光源照亮和其他物体反射的部分,还需要考虑自身的发光项。我们就从反射方程推出一个更通用的渲染方程,它可以概括所有在物体表面上的光线传播。在公式上,把自发光项加进去就行了:
从某个方向上看,某个着色点的radiance =
它自己发出的radiance + 其他入射光源经过BRDF的Radiance。
对于一个点光源的方程:
对于多个点光源:加起来
面光源??点光源的集合,将面光源所占据的立体角积分
其他物体的反射光??考虑物体覆盖的立体角,然后计算这一些立体角的光线,和面光源差不多。
这个问题就可以理解为递归的:跨时代的创造
Render Equation
渲染是个递归的过程
通过一个简化的式子来表示
更简化的式子
L=E+KL
我们这么写的目的是为了:解出L
也就是:解渲染方程
做一个数学变换
这种形式,是光线关于弹射次数的一种分解。
光线弹射一次:直接光照(阴影等)
光线弹射两次及以上:间接光照(反射等)
所有弹射次数的结果加起来就叫做全局光照
光栅化一般只做自发光部分和直接光照的部分,间接光照难做。
光线追踪比较好做间接光照的部分
两张直观的例子
直接光照vs加上弹射两次的间接光照
如果做无限次的弹射会怎么样? 答:会收敛到一个确定的亮度。
那么我们如何解全局光照?先说一些基础知识
3. 概率论回顾(Probability)
3.1 离散随机变量及其分布
随机变量X,随机变量的分布
随机变量以不同的概率取不同的值
概率是非负的
所有概率之和=1
期望:不断取随机变量,并取他们的平均
在连续情况下,如何描述随机变量和它的分布?
3.2 连续随机变量及其分布
概率密度函数(Probability Distribution Function ,PDF)
概率密度函数本身的纵坐标并不是概率,而是一小段横坐标和它对应的函数之间类似于梯形的面积才是概率。
随机变量X作为自变量,求函数Y的期望。