奇异值分解SVD

奇异值分解(SVD)

目录

一、基本原理

  1. 特征值分解
  2. 奇异值分解

二、实例


一、基本原理

1. 特征值分解

特征值与特征向量的定义如下:
A x = λ x (1) Ax=\lambda x \tag{1} Ax=λx(1)
其中, A n × n A_{n \times n} An×n n × n n \times n n×n方阵, x n × 1 x_{n \times 1} xn×1是A的某一方向上的 n × 1 n \times 1 n×1特征向量, λ \lambda λ是该特征向量对应的特征值。

将A方阵的特征值 λ i \lambda_i λi沿对角线组合成为对角矩阵 Σ m × m \Sigma_{m \times m} Σm×m,特征向量 x i x_i xi合并成为 X n × m X_{n \times m} Xn×m,将定义整体向量化后有:
A = X Σ X − 1 (2) A=X \Sigma X^{-1} \tag{2} A=XΣX1(2)
该式即为 A A A的特征值分解。其中, Σ m × m = [ λ 1 λ 2 λ 3 ⋱ λ m ] \Sigma_{m \times m}=\left[ \begin{matrix} \lambda_1 \\ & \lambda_2 \\ && \lambda_3 \\ &&& \ddots \\ &&&& \lambda_m \end{matrix} \right] Σm×m=λ1λ2λ3λm X n × m = [ x 1 ( 1 ) x 2 ( 1 ) x 3 ( 1 ) ⋯ x m ( 1 ) x 1 ( 2 ) x 2 ( 2 ) x 3 ( 2 ) ⋯ x m ( 2 ) ⋮ ⋮ ⋮ ⋮ ⋮ x 1 ( n ) x 2 ( n ) x 3 ( n ) ⋯ x m ( n ) ] X_{n \times m}=\begin{bmatrix} x^{(1)}_1 & x^{(1)}_2 & x^{(1)}_3 & \cdots & x^{(1)}_m \\ x^{(2)}_1 & x^{(2)}_2 & x^{(2)}_3 & \cdots & x^{(2)}_m \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x^{(n)}_1 & x^{(n)}_2 & x^{(n)}_3 & \cdots & x^{(n)}_m \\ \end{bmatrix} Xn×m=x1(1)x1(2)x1(n)x2(1)x2(2)x2(n)x3(1)x3(2)x3(n)xm(1)xm(2)xm(n).

因为矩阵求逆的运算计算机求解很慢,所以将特征向量 x i x_i xi标准化,即令 ∥ x i ∥ 2 = 1 ↔ x i T x i = 1 \color{Maroon}{{\begin{Vmatrix}x_i \end{Vmatrix}}_2=1 \leftrightarrow x^T_i x_i=1} xi2=1xiTxi=1,此时 X X X m m m个特征向量为标准正交基,故 X X X满足 X T X = I → X − 1 = X T X^TX=I \rightarrow X^{-1}=X^T XTX=IX1=XT X X X为酋矩阵(正交矩阵)。原特征分解式(2)转换为如下形式:
A = X Σ X T (3) A=X \Sigma X^T \tag{3} A=XΣXT(3)

2.奇异值分解

特征值分解要求A必须为方阵,为了推广到一般情况,通常采用奇异值分解,定义如下:
A = U Σ V T (4) A=U \Sigma V^T \tag{4} A=UΣVT(4)
其中, A m × n A_{m \times n} Am×n m × n m \times n m×n矩阵, U m × m U_{m \times m} Um×m为左奇异矩阵, Σ m × n \Sigma_{m \times n} Σm×n为奇异值矩阵, V n × n V_{n \times n} Vn×n为右奇异矩阵。 U m × m U_{m \times m} Um×m V n × n V_{n \times n} Vn×n均为酋矩阵(即已经经过标准化), Σ m × n \Sigma_{m \times n} Σm×n主对角线上奇异值从大到小排列,其余元素均为0。

奇异值分解与特征值分解密切相关,推导二者关系的过程如下:

假设有 m × n m \times n m×n矩阵 A m × n A_{m \times n} Am×n,已知 A = U Σ V T A=U \Sigma V^T A=UΣVT,为满足特征值分解方阵条件,使用 A A T AA^T AAT A T A A^TA ATA有:
A T = ( U Σ V T ) T = ( V T ) T Σ T U T = V Σ T U T → { A A T = U Σ V T V Σ T U T A T A = V Σ T U T U Σ V T ∵ U m × m 和 V n × n 均 为 酋 矩 阵 ∴ U T = U − 1 , V T = V − 1 ∵ Σ m × n 除 主 对 角 线 , 其 余 元 素 均 为 0 ∴ Σ Σ T = ( Σ m × m ) 2 ; Σ T Σ = ( Σ n × n ) 2 代 入 上 式 即 有 : { A A T = U ( Σ m × m ) 2 U T A T A = V ( Σ n × n ) 2 V T A^T=(U \Sigma V^T)^T={(V^T)}^T {\Sigma}^T U^T=V {\Sigma}^T U^T \\ \rightarrow \begin{cases} AA^T={U \Sigma V^T}{V {\Sigma}^T U^T} \\ A^TA={V {\Sigma}^T U^T}{U \Sigma V^T} \end{cases} \\\\ \because U_{m \times m}和V_{n \times n}均为酋矩阵 \\ \therefore U^T=U^{-1},V^T=V^{-1} \\\\ \because \Sigma_{m \times n}除主对角线,其余元素均为0 \\ \therefore {\Sigma \Sigma^T}={(\Sigma_{m \times m})}^2;{\Sigma^T \Sigma}={(\Sigma_{n \times n})}^2 \\\\ 代入上式即有: \begin{cases} AA^T={U {(\Sigma_{m \times m})}^2 U^T} \\ A^TA={V {(\Sigma_{n \times n})}^2 V^T} \\ \end{cases} AT=(UΣVT)T=(VT)TΣTUT=VΣTUT{AAT=UΣVTVΣTUTATA=VΣTUTUΣVTUm×mVn×nUT=U1,VT=V1Σm×n线0ΣΣT=(Σm×m)2;ΣTΣ=(Σn×n)2:{AAT=U(Σm×m)2UTATA=V(Σn×n)2VT

注意:上述 Σ m × m \Sigma_{m \times m} Σm×m Σ n × n \Sigma_{n \times n} Σn×n表示原 Σ m × n \Sigma_{m \times n} Σm×n经过 Σ Σ T {\Sigma \Sigma^T} ΣΣT Σ T Σ {\Sigma^T \Sigma} ΣTΣ后还原而来,以此体现出奇异值 σ i \sigma_i σi与特征值 λ i \lambda_i λi的关系:
σ i = λ i \sigma_i=\sqrt{\lambda_i} σi=λi

分别将上述 ( A A T ) (AA^T) (AAT) ( A T A ) (A^TA) (ATA)的结果与特征值分解 B = X Σ X T B=X \Sigma X^T B=XΣXT对比发现:

  • A A T AA^T AAT的特征向量就是 A m × n A_{m \times n} Am×n的左奇异矩阵 U U U

  • A T A A^TA ATA的特征向量就是 A m × n A_{m \times n} Am×n的右奇异矩阵 V V V

  • A A T ( A T A ) AA^T(A^TA) AAT(ATA)的特征值就是 A m × n A_{m \times n} Am×n的奇异值的平方


二、实例

问:假设我们有特征矩阵 m × n m{\times}n m×n的矩阵 A 2 × 2 A_{2\times 2} A2×2,求A的左奇异矩阵 U U U、奇异值矩阵 Σ \Sigma Σ、右奇异矩阵 V V V
A = [ 3 0 4 5 ] 2 × 2 A={ \left[ \begin{matrix} 3 & 0 \\ 4 & 5 \\ \end{matrix} \right] }_{2\times 2} A=[3405]2×2

通过求解 A A T AA^T AAT A T A A^TA ATA 特征值分解后的特征值与特征向量,进而求解左右奇异矩阵和奇异值矩阵,以求解 A T A A^TA ATA的特征值分解为例:

解:

A T A = [ 3 4 0 5 ] [ 3 0 4 5 ] = [ 25 20 20 25 ] A^TA={\left[ \begin{matrix} 3 & 4 \\ 0 & 5 \\ \end{matrix} \right] } {\left[ \begin{matrix} 3 & 0 \\ 4 & 5 \\ \end{matrix} \right] } = {\left[ \begin{matrix} 25 & 20 \\ 20 & 25 \\ \end{matrix} \right] } \\ ATA=[3045][3405]=[25202025]
∵ \because 特征值分解满足: B x i = λ i x i Bx_i=\lambda_ix_i Bxi=λixi ( x i x_i xi为特征向量, λ i \lambda_i λi为对应特征值)
∴ \therefore ( B − λ i I ) x i = 0 (B-\lambda_i I)x_i=0 (BλiI)xi=0, d e t ( B − λ i I ) = 0 det(B-\lambda_iI)=0 det(BλiI)=0的解即为特征值.
∣ A T A − λ I ∣ = ∣ 25 − λ 20 20 25 − λ ∣ = ( 25 − λ ) 2 − 400 = 0 \begin{vmatrix} A^TA-\lambda I \end{vmatrix}= \begin{vmatrix} 25-\lambda & 20 \\ 20 & 25-\lambda \end{vmatrix}= (25-\lambda)^2-400=0 ATAλI=25λ202025λ=(25λ)2400=0

解 得 : λ 1 = 45 , λ 2 = 5 解得:\lambda_1=45,\lambda_2=5 λ1=45,λ2=5

将特征值 λ i \lambda _i λi代入 ( A T A − λ i I ) x i = 0 (A^TA-{\lambda}_i I)x_i=0 (ATAλiI)xi=0 并进行标准化(保证正交性)有:

(1)对于 λ 1 = 45 \lambda_1=45 λ1=45,对应特征向量 x 1 x_1 x1为:
[ 25 − 45 20 20 25 − 45 ] [ x 1 1 x 1 2 ] = 0 ⇒ x 1 1 = x 1 2 标 准 化 x i : ∥ x i ∥ = 1 ⇒ x 1 = [ 1 2 1 2 ] \left[ \begin{matrix} 25-45 & 20 \\ 20 & 25-45 \end{matrix} \right] \left[ \begin{matrix} x_1^1 \\ x_1^2 \end{matrix} \right]=0 \Rightarrow x_1^1=x_1^2 \\ 标准化x_i: \begin{Vmatrix} x_i \end{Vmatrix}=1 \Rightarrow x_1= { \left[ \begin{matrix} \frac{1}{\sqrt 2} \\ \frac{1}{\sqrt 2} \end{matrix} \right] } [254520202545][x11x12]=0x11=x12xi:xi=1x1=[2 12 1]
(2)对于 λ 2 = 5 \lambda_2=5 λ2=5,对应特征向量 x 2 x_2 x2为:

[ 25 − 5 20 20 25 − 5 ] [ x 2 1 x 2 2 ] = 0 ⇒ x 2 1 = − x 2 2 标 准 化 x i : ∥ x i ∥ = 1 ⇒ x 2 = [ 1 2 − 1 2 ] \left[ \begin{matrix} 25-5 & 20 \\ 20 & 25-5 \end{matrix} \right] \left[ \begin{matrix} x_2^1 \\ x_2^2 \end{matrix} \right]=0 \Rightarrow x_2^1=-x_2^2 \\ 标准化x_i: \begin{Vmatrix} x_i \end{Vmatrix}=1 \Rightarrow x_2= { \left[ \begin{matrix} \frac{1}{\sqrt 2} \\ -\frac{1}{\sqrt 2} \end{matrix} \right] } [2552020255][x21x22]=0x21=x22xi:xi=1x2=[2 12 1]

∴ \therefore 综上:我们得到 A T A A^TA ATA的特征值与特征向量,同理可得 A A T AA^T AAT。对应到A的奇异值分解为:左奇异矩阵 U = [ 1 10 3 10 3 10 − 1 10 ] U={ \left[ \begin{matrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}} \\ \end{matrix} \right] } U=[10 110 310 310 1]

右奇异向量矩阵 V = [ 1 2 1 2 1 2 − 1 2 ] V={ \left[ \begin{matrix} \frac{1}{\sqrt 2} & \frac{1}{\sqrt 2} \\ \frac{1}{\sqrt 2} & -\frac{1}{\sqrt 2} \end{matrix} \right] } V=[2 12 12 12 1],奇异值矩阵 Σ = [ 45 0 0 5 ] \Sigma={ \left[ \begin{matrix} \sqrt{45} & 0 \\ 0 & \sqrt{5} \end{matrix} \right] } Σ=[45 005 ](注意:求解后应有 ∣ U ∣ = ∣ V ∣ \begin{vmatrix}U\end{vmatrix}=\begin{vmatrix}V\end{vmatrix} U=V).

将计算得到的 U U U, Σ \Sigma Σ, V V V代入奇异值分解 A = U Σ V T A=U \Sigma V^T A=UΣVT验证有:

A = [ 1 10 3 10 3 10 − 1 10 ] [ 45 0 0 5 ] [ 1 2 1 2 1 2 − 1 2 ] = [ 3 0 4 5 ] A= { \left[ \begin{matrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}} \\ \end{matrix} \right] } { \left[ \begin{matrix} \sqrt{45} & 0 \\ 0 & \sqrt{5} \end{matrix} \right] } { \left[ \begin{matrix} \frac{1}{\sqrt 2} & \frac{1}{\sqrt 2} \\ \frac{1}{\sqrt 2} & -\frac{1}{\sqrt 2} \end{matrix} \right] }= { \left[ \begin{matrix} 3 & 0 \\ 4 & 5 \\ \end{matrix} \right] } A=[10 110 310 310 1][45 005 ][2 12 12 12 1]=[3405]

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值