Lite-Mono-CVPR-2023 代码复现心得

1. 数据集准备

参考monodepth2

2. 环境准备及代码修改

(1)下载monodepth2litemono的源码;

(2)创建虚拟环境,建议根据cuda版本然后下载torch,然后缺啥补啥,参考环境如下:

        ··GPU:A100

        ··Python版本:3.12

        ··torch版本:2.2.2

        ··linear_warmup_cosine_annealing_warm_restarts_weight_decay:把这个包下载下来,然后把里面的文件夹复制到虚拟环境的site package文件夹里,具体操作:

terminal输入以下代码来确定“sitepackages”文件位置:

python -c "import site; print(site.getsitepackages())

(2)将monodepth2中的splits替换掉litemono的splits;

(3)提前下载好预训练权重,包括resnet的和lite-mono-pretrain的,如图所示。实际训练下来不用lite-mono-pretrain的10个epoch的Abs Rel为0.15x,使用pretrain的为0.11x(接近论文里的0.107)。

 (4)版本问题会引起一些bug,gpt基本都能修改,如:

        ··kitti_utils.py中:np.int要改成int

3. 训练

(1)修改options的一些参数;

(2)terminal运行:

python train.py --data_path path/to/your/data --model_name mytrain --num_epochs 30 --batch_size 12 --mypretrain path/to/your/pretrained/weights  --lr 0.0001 5e-6 31 0.0001 1e-5 31

(3)根据报错改bug....

4. 评估

(1)准备gt_depths.npz

        ··打开monodepth2项目,运行,然后得到npz复制到litmono到splits/eigen下:

python export_gt_depth.py --data_path kitti_data --split eigen

        ··注:这里会因为numpy版本问题报错,修改export_gt_depth.py最后一部分代码:

 np.savez_compressed(output_path, data=np.array(gt_depths, dtype=object), allow_pickle=True)

(2)评估:

python evaluate_depth.py --load_weights_folder path/to/your/weights/folder --data_path path/to/kitti_data/ --model lite-mono

参考链接:

1. litemono代码-CSDN博客

2. Ubuntu深度环境搭建_litemono复现-CSDN博客

3. 复现monodepth2或Lite-Mono时碰到找不到splits\\eigen\\gt_depths.npz_monodepth2复现-CSDN博客

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值