mini-batch版交叉熵误差

深度学习入门:基于Python的理论与实现

# 可以同时处理单个数据和批量数据
def cross_entropy_error(y, t):
	'''判断维数,将单个数据和批量数据处理成同样的形式,
	方便后面shape[0]取出batch_size'''
    if y.ndim == 1:
        t = t.reshape(1, t.size)
        y = y.reshape(1, y.size)

	# shape[0]即最外层的个数,即batch_size(每一批的数据量)
    batch_size = y.shape[0]
    print("y.shape[0]:", y.shape[0])
    print("y.shape:", y.shape)
    # 返回平均交叉熵误差
    return
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值