矩阵分析与应用

矩阵分解的分类

矩阵分解是通过线性变换,将某个给定或已知的矩阵分解为两个或三个矩阵标准型的乘积,个别情况下会分解为两个矩阵标准型之和。

单个矩阵的分解:
根据矩阵A分解后的矩阵的标准型,可以分为以下四大类。

对角化分解:这类分解是通过正交变换,将矩阵A对角化的,包括以下三种形式。

1.奇异值分解(SVD):A=U\Sigma V^{H}UAV^{H}=\Sigma,其中U和V二者为酉矩阵,\Sigma为对角矩阵。

2.特征值分解(EVD):A^{H}A=V\Sigma V^{H}AA^{H}=U\Sigma U^{H}

3.CS分解:可看做是正交矩阵分块的同时对角化分解

CS分解定理:若\left (k+j \right )\times (k+j)矩阵:

Q=\begin{bmatrix} Q_{11} &Q_{12} \\ Q_{21}& Q_{22} \end{bmatrix}

是正交的,其中Q_{11}k\times k矩阵,且k\geqslant j,则存在正交矩阵U_{1},V_{1}\in R^{k\times k}和正交矩阵U_{2},V_{2}\in R^{j\times j}使得:

\begin{bmatrix} U_{1} &O \\ O& U_{2} \end{bmatrix}\begin{bmatrix} Q_{11} &Q_{12} \\ Q_{21}& Q_{22} \end{bmatrix}\begin{bmatrix} V_{1} &O \\ O& V_{2} \end{bmatrix}=\begin{bmatrix} I_{k-j} &O &O \\ O& C& S\\ O & -S &C \end{bmatrix}

其中

C=diag(c_{1},c_{2},.. .,c_{j}),c_{i}=cos\theta _{i}

S=diag(s_{1},s_{2},.. .,s_{j}),s_{i}=sin \theta _{i}

0 \leqslant \theta_{1}\leqslant \theta_{2}\leqslant.. .\leqslant \theta_{j}\leqslant \pi /2

CS分解相当于将一个正交矩阵的各个分块同时对角化。

例:矩阵

Q=\begin{bmatrix} -0.761 &-0.698 &-0.006 \\ 0.548 & -0.555 &-0.626 \\ 0.433&-0.451 & 0.780 \end{bmatrix}

是正交的,选择正交矩阵

U=\begin{bmatrix} 0.999 &-0.010 &0.000 \\ -0.010 &-0.999 & 0.000\\ 0.000 & 0.000 & 1.000 \end{bmatrix}

V=\begin{bmatrix} -0.721 &-0.692&0.000 \\ -0.692 &0.721 & 0.000\\ 0.000 & 0.000 & 1.000 \end{bmatrix}

则有:

U^{T}QV=\begin{bmatrix} 1.000 &0.000 &0.000 \\ 0.000& 0.780& 0.625\\ 0.000&-0.625 &0.780 \end{bmatrix}

即取k=2,j=1,c_{1}=0.780,s_{1}=0.625

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值