矩阵分析与应用

实内积空间

实内积空间是满足下列条件的实向量空间EE中每一对向量x,y,存在向量xy的内积\left \langle x,y \right \rangle服从以下公理:

  1. \left \langle x,x \right \rangle > 0,\forall x \neq 0,称为内积的严格正性或称内积是正定的。
  2. \left \langle x,y \right \rangle=\left \langle y,x \right \rangle,称为内积的对称性。
  3. \left \langle x,y+z \right \rangle=\left \langle x,y \right \rangle+\left \langle x,z \right \rangle\forall x,y,z
  4. \left \langle\alpha x,y \right \rangle=\alpha \left \langle x,y \right \rangle对所有实向量x,y以及所有实标量\alpha成立

典范内积:对实n阶向量空间R^{n}定义向量x=\left [ x_{1},x_{2},.. .,x_{n} \right ]^{T},y=\left [ y_{1},y_{2},.. .,y_{n} \right ]^{T},它们之间的内积称为典范内积。称R^{n}为n阶Euclidean空间或者Euclidean n 空间。
 

\left \langle x,y \right \rangle=\sum_{i=1}^{n}x_{i}y_{i}

x(t),y(t)R的两个连续函数,并且t的定义域为\left [ a,b \right ],则x(t),y(t)之间的内积定义为:

\left \langle x(t),y(t) \right \rangle = \int_{a}^{b}x(t),y(t) dt

范式

R_{n}是一个实向量空间,并且x \in E^{n},则x的范数(或长度)记为\left \| x \right \|,并定义为

\left \| x \right \|=\left \langle x,x \right \rangle^{1/2}

长度为1的向量称为单位向量。

向量xy之间的距离定义为

d=\left \| x-y \right \|=\left \langle x-y,x-y \right \rangle^{1/2}

对于Euclidean n 空间,向量范数取

\left \| x \right \|_{2}=\sqrt{a_{1}^{2}+a_{2}^{2}+.. .+a_{n}^{2}}

并称为向量x的Euclidean长度。

向量的距离取:\left \| x-y \right \|_{2}=\sqrt{(a_{1}-b_{1})^{2}+(a_{2}-b_{2})^{2}+.. .+(a_{n}-b_{n})^{2}}

并称为向量xy之间的Euclidean距离。

实内积空间的范数具有的一般性质:

  1. \left \| 0 \right \|=0并且\left \| x \right \|>0,\forall x\neq 0.
  2. \left \| cx \right \|=\left \| c \right \|\left \| x \right \|对所有向量x和标量c成立。
  3. 范数服从极化恒等式\left \langle x,y \right \rangle=\frac{1}{4}\left ( \left \| x+y \right \| ^{2} -\left \| x-y \right \| ^{2}\right ),\forall x,y
  4. 范数满足平行四边形法则\left \| x+y \right \|^{2}+\left \| x-y \right \|^{2}=2\left \| x \right \|^{2}+2\left \| y \right \|^{2},\forall x,y
  5. 范数服从Cauchy-Schwartz不等式\left | \left \langle x,y \right \rangle \right |\leqslant \left \| x \right \|\left \| y \right \|。当且仅当y=cx时等号成立,其中c为某个非零常数。
  6. 范数满足三角不等式\left \| x+y \right \|\leqslant \left \| x \right \|+\left \| y \right \|,\forall x,y

复内积空间

复内积空间内的向量为复向量,一个有限维的复内积空间的复向量x=\left [ x_{1},x_{2},.. .,x_{n} \right ]^{T},y=\left [ y_{1},y_{2},.. .,y_{n} \right ]^{T}之间的内积表示为:
\left \langle x,y \right \rangle=x^{H}y=\sum_{i=1}^{n}x_{i}^{*}y_{i}

在复内积空间内,范数具有以下性质:

  1. \left \| 0 \right \|=0,\left \| x \right \|>0, \forall x \neq 0
  2. \left \| cx \right \|=| c |\left \| x \right \|其中|c|表示复数c的模。
  3. 极化恒等式\left \langle x,y \right \rangle=\frac{1}{4}\left ( \left \| x+y \right \|^{2}-\left \| x-y \right \|^{2} -j\left \| x+jy \right \|^{2}+j\left \| x-jy \right \|^{2}\right )
  4. 平行四边形法则\left \| x+y \right \|^{2}+\left \| x-y \right \|^{2}=2\left \| x \right \|^{2}+2\left \| y \right \|^{2}
  5. Cauchy-Schwartz不等式\left | \left \langle x+y \right \rangle \right |\leqslant \left \| x \right \|\left \| y \right \|,当且仅当y=cx时等号成立。
  6. 三角不等式\left \| x+y \right \|\leqslant \left \| x \right \| +\left \| y \right \|

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值