矩阵分析与应用

QR分解

QR分解定理:若A\in R^{m\times n},且m\geqslant n,则存在列正交的矩阵Q\in R^{m\times n}和上三角矩阵R\in R^{n\times n}使得A=QR,当m=n时,Q是正交矩阵。如果A是非奇异的n\times n矩阵,则R的所有对角线元素均为正数,并且在这种情况下Q和R二者是唯一的,若A是复矩阵,则Q和R取复值。

引理:若A和B是任意两个m \times n矩阵,则

A^{H}A=B^{H}B

当且仅当存在一个m \times m酉矩阵Q,使得

QA=B

采用施密特正交法的QR分解步骤:

步骤1:写出矩阵A的列向量。

步骤2:把列向量组按照施密特正交方法得到正交矩阵组(q_{1},q_{2},q_{3},q_{4})的线性组合,由此构成的矩阵为正交矩阵Q。

步骤3:把矩阵A列向量表示成向量组(q_{1},q_{2},q_{3},q_{4})的线性组合,则系数矩阵为R。

步骤4:得出矩阵的QR分解。

例:求下列矩阵的QR分解

A=\begin{bmatrix} 1 &1 &-1 \\ 1& 0& 0\\ 0& 1&0 \\ 0&0 & 1 \end{bmatrix}

首先将A矩阵正交化,得到一组正交向量组:

\beta_{1}=\alpha _{1}=[1,1,0,0]^{T}

\beta_{2}= \alpha _{2}-\frac{\alpha _{2},\beta_{1}}{\beta_{1},\beta_{1}}\beta_{1}= \alpha _{2}-\frac{1}{2}\beta_{1}=[\frac{1}{2},-\frac{1}{2},1,0]^{T}

\beta_{3}= \alpha _{3}-\frac{\alpha _{3},\beta_{1}}{\beta_{1},\beta_{1}}\beta_{1}-\frac{\alpha _{3},\beta_{2}}{\beta_{2},\beta_{2}}\beta_{2}= \alpha _{3}+\frac{1}{2}\beta_{1}+\frac{1}{3}\beta_{2}=[-\frac{1}{3},\frac{1}{3},\frac{1}{3},1]^{T}

再将其单位化,得到一组标准正交向量组:

\eta _{1}=\frac{1}{\left \| \beta _{1} \right \|} \beta _{1} =[\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0,0]^{T}

\eta _{2}=\frac{1}{\left \| \beta _{2} \right \|} \beta _{2} =[\frac{\sqrt{6}}{6},-\frac{\sqrt{6}}{6},\frac{\sqrt{6}}{3},0]^{T}

\eta _{3}=\frac{1}{\left \| \beta _{3} \right \|} \beta _{3} =[-\frac{\sqrt{3}}{6},\frac{\sqrt{3}}{6},\frac{\sqrt{3}}{6},\frac{\sqrt{3}}{2}]^{T}

Q=(\eta _{1},\eta _{2},\eta _{3})=\begin{bmatrix} \frac{\sqrt{2}}{2} &\frac{\sqrt{6}}{6} & -\frac{\sqrt{3}}{6}\\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} &\frac{\sqrt{3}}{6} \\ 0 & \frac{\sqrt{6}}{3}&\frac{\sqrt{3}}{6} \\ 0 &0 &\frac{\sqrt{3}}{2} \end{bmatrix}

由上各式有:

\beta_{1}=\alpha _{1}\Rightarrow \alpha _{1}=\beta_{1}

\beta_{2}= \alpha _{2}-\frac{1}{2}\beta_{1}\Rightarrow \alpha _{2}=\beta_{2}+\frac{1}{2}\beta_{1}

\beta_{3}= \alpha _{3}+\frac{1}{2}\beta_{1}+\frac{1}{3}\beta_{2}\Rightarrow \alpha _{3}=\beta_{3}-\frac{1}{2}\beta_{1}-\frac{1}{3}\beta_{2}

又因:

\beta _{1} =\left \| \beta _{1} \right \|\eta _{1}

\beta _{2} =\left \| \beta _{2} \right \|\eta _{2}

\beta _{3} =\left \| \beta _{3} \right \|\eta _{3}

可得:

\alpha _{1}=\sqrt{2}\eta _{1}

\alpha_{2}=\frac{1}{2}\beta_{1}+\beta_{2}=\frac{\sqrt{2}}{2}\eta _{1}+\frac{\sqrt{6}}{2}\eta _{2}

\alpha _{3}=\beta_{3}-\frac{1}{2}\beta_{1}-\frac{1}{3}\beta_{2}=-\frac{\sqrt{2}}{2}\eta _{1}-\frac{\sqrt{6}}{6}\eta _{2}+\frac{2\sqrt{3}}{3}\eta _{3}

最终可得矩阵R为:

R=\begin{bmatrix}\sqrt{2}&\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\\ 0& \frac{\sqrt{6}}{2} &\frac{-\sqrt{6}}{6} \\ 0 &0 &\frac{2\sqrt{3}}{3} \end{bmatrix}

Householder QR分解:

Householder 变换可以实现任意m*n矩阵A的QR分解,其原理是使用变维向量的Householder 变换,使得该向量除第一个元素外,其他元素皆变为0。

欲使得一个p维向量x=[x_{1},x_{2},.. .,x_{p}]^{T}的第1个元素后的所有元素变为0,则p维的Householder向量应取: 

w=-\frac{x-\beta e_{1}} {\sqrt{\bar{\beta} (\beta -x_{1})}}

其中

\bar{\beta }=-|x_{1}|||x||,\beta =-\frac{x_{1}}{|x_{1}|}\left \| x \right \|

假设m*n矩阵A的列分块形式为:

A_{m\times n}=[a_{1},a_{2},.. .,a_{n}]

首先令x=a_{1}=[a_{11},a_{21},.. .,a_{m1}]^{T},并取p=m,则可得u_{1}=w_{m}

此时:

H_{1}=I-u_{1}u_{1}^{T}\rightarrow A_{1}=H_{1}A=[a_{1}^{(1)},a_{2}^{(1)},.. .,a_{n}^{(1)}]

变换后,矩阵A_{1}的第一列a_{1}^{(1)}的第一个元素等于(a_{11}^{2}+a_{21}^{2}+.. .+a_{m1}^{2})^{1/2},而该列的其他元素全为0.

接下来针对矩阵A_{1}的第2列a_{2}^{(1)},令p=m-1和

x=[a_{22},a_{32},.. .,a_{m2}]^{T}

即可求出m-1维向量w_{m-1},此时,取u_{2}=\begin{bmatrix} 0\\ w_{m-1} \end{bmatrix},可得:

H_{2}=I-u_{2}u_{2}^{T}\rightarrow A_{2}=H_{2}A_{1}=H_{2}H_{1}A=[a_{1}^{(1)},a_{2}^{(2)},.. .,a_{n}^{(2)}]

矩阵A_{2}的第一列与A_{1}的第一列相同,而第二列a_{1}^{(1)}的第一个元素等于a_{12}^{(1)},第二个元素等于[|a_{22}^{(1)}|^{2}+|a_{32}^{(1)}|^{2}+.. .+|a_{m2}^{(1)}|^{2}]^{1/2},而该列的其他元素全为0,接下来以此类推。

假设矩阵A经过k-1次Householder 变换后,变为A^{(k-1)},即:

A^{(k-1)}=H_{k-1}A^{(k-2)}=H_{k-1}.. .H_{1}A\\=\left [ a_{1}^{(k-1)},a_{2}^{(k-1)}.. .,a_{n}^{(k-1)} \right ],k=2,3,.. .

前k-1列有以下变换结果:

a_{j}^{(k-1)}=[a_{1j}^{(k-1)}.. .,a_{jj}^{(k-1)},0,.. .,0]^{T},j=1,2,.. .,k-1

经过n次Householder 变换后,即可实现QR分解。

例:已知线性方程组

x_{1}+2x_{2}=5

2x_{1}+3x_{2}=-2

6x_{1}+7x_{2}=1

则可得:

A=\begin{bmatrix} 1 &2 &5 \\ 2 &3 &8 \\ 6& 7 & 1 \end{bmatrix}

对第一列可得u_{1}=[1.075,0.290,0.871]^{T},H_{1}=I-u_{1}u_{1}^{T}得:

H_{1}A=\begin{bmatrix} -6.415 &-7.826 &-23.008 \\ 0 & 0.592& 0.875\\ 0 &0.808 & 1.438 \end{bmatrix}

针对上述矩阵第二列,可得u_{1}=[0,1.161,-0.809]^{T}H_{2}=I-u_{2}u_{2}^{T}后,即得QR分解得:

H_{2}H_{1}A=\begin{bmatrix} -6.415 &-7.826 &-23.008 \\ 0 & -1.105& -1.851\\ 0 &0 &-0.160 \end{bmatrix}

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《矩阵分析应用》是由张贤达编著的一本关于矩阵分析及其在应用中的使用的教材。本书主要介绍了矩阵的基本概念、性质和运算,并探讨了矩阵在线性代数、微积分、概率统计、信号处理等学科中的应用。 在矩阵分析的基础部分,本书详细阐述了矩阵的定义、矩阵的运算法则,以及线性方程组和特征值问题等。这些基础知识对于进一步学习矩阵应用具有重要的指导作用。 在矩阵应用部分,本书首先介绍了矩阵在线性方程组解、线性变换、向量空间等方面的应用。其次,本书还讨论了矩阵在微积分中的应用,如矩阵微积分和矩阵微分方程等。此外,本书还深入介绍了矩阵在概率统计、信号处理、图论及最优化等领域中的重要应用,如随机矩阵、协方差矩阵、图的邻接矩阵和最小二乘法等。 总的来说,张贤达的《矩阵分析应用》是一本内容丰富、系统全面的矩阵分析教材。通过阅读本书,读者可以逐步掌握矩阵的基本理论和运算,并了解其在不同学科中的应用。无论是对于即将学习矩阵分析的学生,还是对于已经有一定矩阵基础的科研人员和工程师,本书都是一本实用的参考书,可以提供帮助和指导。 ### 回答2: 《矩阵分析应用》是由张贤达编写的一本专门介绍矩阵分析应用的教材。该书以系统的方式介绍了矩阵的理论、性质和基本运算,同时也涵盖了矩阵在各种应用领域中的具体应用。这本教材适用于数学、物理、工程、计算机科学等各个领域的学习者。 在矩阵分析的理论方面,书中首先介绍了矩阵的基本概念和运算法则,包括行、列、元素、转置、加减乘除等,同时也解释了矩阵的相等和乘积等性质。然后,书中详细讲解了特殊类型的矩阵,如对称矩阵、三角矩阵、奇异矩阵等,并介绍了它们的特征和性质。此外,书中还涉及到矩阵的线性组合、秩、行列式、逆矩阵和特征值等重要概念和定理。 在应用方面,该书展示了矩阵在各个领域中的广泛应用。首先,矩阵在线性代数中的应用包括解线性方程组、线性变换、特征值问题等。其次,矩阵在工程中的应用包括电路分析、力学分析、信号处理等。最后,矩阵在计算机科学中的应用包括图像处理、机器学习、数据挖掘等。 总之,《矩阵分析应用》是一本全面介绍矩阵分析应用的教材,在理论和应用方面都给予了读者充分的讲解和示例。无论是对于学术研究者还是专业技术人员,该书都是一本很好的参考书籍。它帮助读者建立了对矩阵的全面认识,为进一步的学习和应用提供了坚实的基础。 ### 回答3: 《张贤达矩阵分析应用pdf》是张贤达教授撰写的一本关于矩阵分析应用的教材。矩阵分析是数学中的分支之一,它研究矩阵的性质和运算规律,并将其应用于各种领域。 这本教材以系统介绍矩阵分析为主线,内容包括线性空间、线性变换、矩阵的运算与性质、特征值与特征向量等基础内容。此外,它还涵盖了矩阵的迹、行列式、正交变换、对称矩阵等高级内容,以及广义逆矩阵、半正定矩阵等一些应用领域。 这本教材的优点是内容全面,理论与实践相结合。作者以通俗易懂的语言解释了复杂的数学概念,并且通过大量的例题和习题帮助读者巩固所学知识。此外,教材还提供了一些实际应用案例,如图像处理、信号处理等领域,使读者能够将所学知识应用于实际问题中。 针对该教材的读者群体主要包括数学、工程、物理等相关专业的本科生和研究生。对于想要深入学习矩阵分析应用于实际问题的读者来说,这本教材是一本很好的参考书。 总体来说,《张贤达矩阵分析应用pdf》是一本内容丰富、易于理解且具有实际应用价值的教材。无论是作为教学辅助资料还是自学工具,它都能帮助读者掌握矩阵分析的核心概念和方法,并将其应用于实际问题中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值