【原创】图像处理第3弹:俯卧撑检测并计数

本文介绍了一个使用深度学习技术进行俯卧撑姿势检测和计数的算法,通过Mediapipe模块获取身体部位的三维坐标,判断姿势是否符合俯卧撑特点,并基于肘部弯曲度变化进行计数。算法还包括防止数据波动导致的误判措施,最终实现了准确的俯卧撑检测和计数功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

前面我们介绍了手势检测以及手势识别,今天要说的是姿势检测及识别。

因为我个人有运动的习惯,所以就以最基础的俯卧撑为例,实现以下三个目标:

1.检测到俯卧撑姿势

2.俯卧撑计数

3.检测结果输出。(push-up:计数)

二、算法原理

1.俯卧撑姿势检测

我么还是沿用谷歌的mediapipe模块来获取身体各个部位的三维坐标。mediapipe会给我们返回以下内容。
在这里插入图片描述
如图所示,返回值总共有33个点的信息,每个点包含了该点的横轴,纵轴以及深度信息,也就是该点三维信息。有了这些点的信息我们就可以设计算法来对姿势进行识别。

俯卧撑姿势很明显的特点就是身体处于水平状态,也就是腰部弯曲度接近于180,并且腰,肩,膝盖大约处于同一个水平度。基于这个特征我们就可以按照以下算法来判定是否为俯卧撑姿势:

①肩,腰以及膝盖组成的三角形中,腰部的夹角是否接近于180度(参考上一节三维空间坐标夹角算法)

②根据肩,腰以及膝盖的水平高度的标准偏差来判定姿势是否属于平卧状态。

※标准偏差(Std Dev,Standard Deviation) -统计学名词。一种度量数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeepVisionZero

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值