【数据结构】堆的讲解与实现

本文详细介绍了堆数据结构的原理,包括大堆和小堆的概念,以及如何使用C语言实现堆的初始化、插入、删除、调整和销毁。堆作为一种完全二叉树,其插入和删除操作需要通过向上调整和向下调整来保持堆的性质。时间复杂度分析表明,这些操作的时间复杂度接近于线性。提供的源代码展示了如何构建和操作大堆,并给出了转换为小堆的方法。
摘要由CSDN通过智能技术生成

堆的结构分析

需要注意的是堆是一种数据结构,与操作系统的堆区没有关系。

堆的结构:堆是完全二叉树,从左到右是连续的,适合用数组存储

在这里插入图片描述

在这里插入图片描述

堆是一颗完全二叉树,分为大堆和小堆

大堆:一个树中,任何父亲节点都大于等于孩子节点,所以大堆的根节点最大

小堆:一个树中,任何父亲节点都小于等于孩子节点,所以小堆的根节点最小

在这里插入图片描述

堆的实现

了解过顺序表的小伙伴,对堆的实现就非常简单了,采用malloc动态内存分配开辟空间存储节点。因为要满足大堆或小堆,需要用到向上调整和向下调整算法,我们直接在下面的实现中了解,先以大堆为例,到时候只需要微调向上调整和向下调整就能实现大堆与小堆的切换

堆的存储结构

typedef int HPDataType;

typedef struct Heap
{
	HPDataType* p;
	int size;//节点个数
	int capacity;//空间容量
}HP;

堆初始化

//对象传给HeapInit函数初始化
int mian()
{
	HP h;
	HeapInit(&h);
}
void HeapInit(HP* pc)
{	
	assert(pc);
	pc->capacity = pc->size = 0;
	pc->p = NULL;
}

堆的插入push

建堆:为了不破坏堆的原有结构,就要依次尾插,而要满足大堆,每次插入就要与父亲节点比较大小,不断向上调整,最终实现大堆

int arr[6] = { 70, 56, 30, 60, 25, 40 };

向上调整

插入的节点不断与父亲节点比较,如果孩子节点大于父亲节点,就交换位置,然后再次与新的父亲节点比较,小于父亲节点就终止

在这里插入图片描述

//交换函数在下面的堆删除也能复用
void HeapSwap(HPDataType* p1, HPDataType* p2)
{	
	assert(p1 && p2);
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
void AdjustUp(HPDataType* p, int child)
{	
	assert(p);
	int parent = (child - 1) / 2;
	while (child >0)
	{
		//大于父亲节点就调整
		if (p[child] > p[parent])
		{
			HeapSwap(&p[child], &p[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
			break;
	}
}
//插入节点也需要判断空间是否满了,满了就扩容
void HeapPush(HP* pc, HPDataType x)
{
	assert(pc);
	//扩容
	if (pc->capacity == pc->size)
	{
		int newcapacity = pc->capacity == 0 ? 4 : pc->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(pc->p, sizeof(HPDataType) * newcapacity);
		if (tmp == NULL)
		{
			printf("realloc failed\n");
			exit(-1);
		}
		pc->p = tmp;
		pc->capacity = newcapacity;
	}
	pc->p[pc->size] = x;
	pc->size++;
	AdjustUp(pc->p, pc->size-1);
}

堆判空

当我们需要删除堆中节点时,首先就需要判断堆是否为空,是否有节点存在,如同上面堆插入需要先判断空间是否满了

bool HeapEmpty(HP* pc)
{
	assert(pc);

	return pc->size == 0;
}

堆删除pop

堆的删除是头删,但如果直接删除堆顶元素,就会破坏堆的原有结构了,所以我们可以先交换堆顶与堆尾的元素再尾删,之后再向下调整

向下调整

向下调整:父亲节点与较大的孩子节点比较大小,如果小于孩子节点就向下调整,父亲节点大于等于较大的孩子节点就终止

在这里插入图片描述

在这里插入图片描述

通过上面的图发现:

父亲节点为0 左孩子1=0*2+1

​ 右孩子:2=0*2+2

父亲节点为1 左孩子:3=1*2+1

​ 右孩子:4=1*2+2

同时左孩子+1就是右孩子

所以leftchild=parent*2+1

​ rightchild=leftchild+1

同时paren=(child-1)/ 2 , child:左右孩子都行

父亲节点为0 左孩子1=0*2+1

​ 右孩子:2=0*2+2

父亲节点为1 左孩子:3=1*2+1

​ 右孩子:4=1*2+2

同时左孩子+1就是右孩子

所以leftchild=parent*2+1
​ rightchild=leftchild+1
同时paren=(child-1)/ 2 , child:左右孩子都行

AdjustDown(HPDataType* p, int n, int parent)
{	
	//左孩子
	int child = parent * 2 + 1;
	while (child < n)
	{	
		//判断是否有右孩子且右孩子大于左孩子
		if (child + 1 < n && p[child + 1] > p[child])
			++child;
		if (p[child] < p[parent])
		{
			HeapSwap(&p[child], &p[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
			break;
	}
}
void HeapPop(HP* pc)
{
	assert(pc && !HeapEmpty(pc));

	HeapSwap(&pc->p[pc->size - 1], &pc->p[0]);
	pc->size--;
	AdjustDown(pc->p, pc->size, 0);
}

堆销毁

void HeapDestroy(HP* pc)
{	
	assert(pc && !HeapEmpty(pc));
	//释放动态开辟的空间
	free(pc->p);
	pc->capacity = pc->size = 0;
}

运行结果

将数组元素依次push形成的大堆

在这里插入图片描述

pop一次形成的大堆

在这里插入图片描述

大堆我们已经实现了,如果要换成小堆,就是父亲节点总是小于等于孩子节点

1、向上调整中,父亲节点>较小的孩子节点则交换

2、向下调整中,父亲节点>较小的孩子节点则交换

时间复杂度分析

对堆的时间复杂度分析,也就是向上调整和向下调整算法的时间复杂度,而它们的时间复杂度与树的高度有关
以向下调整为例:
假设树的高度为h:

第1层,20个节点,需要向下移动h-1层

第2层,21个节点,需要向下移动h-2层

第3层,22个节点,需要向下移动h-3层

第4层,23个节点,需要向下移动h-4层

……

第h-1层,2h-2个节点,需要向下移动1层

则需要移动节点的总步数为:

T(n)=20(h-1)+21(h-2)+22(h-3)+23(h-4)+2h-3*2+2h-2*1 1

2T(n)=21(h-1)+22(h-2)+23(h-3)+24*(h-4)+2h-2*2+2h-1*1 2

2-1错位相减:

T(n)=1-h+21+22+23+24+……+2h-2+2h-1

T(n)=20+21+22+23+24+2h-2+2h-1-h

T(n)=2h-1-h

n=2h-1 h=log2(n+1)

T(n)=n-log2(n+1) 约等n

源代码

Heap.h

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>

typedef int HPDataType;

//实现大堆
typedef struct Heap
{
	HPDataType* p;
	int size;
	int capacity;
}HP;

//堆初始化
void HeapInit(HP* pc);
//堆中元素交换
void HeapSwap(HPDataType* p1, HPDataType* p2);
//打印元素
void HeapPrint(HP* pc);
//堆插入
void HeapPush(HP* pc, HPDataType x);
//堆删除
void HeapPop(HP* pc);
//堆销毁
void HeapDestroy(HP* pc);
//堆判空
bool HeapEmpty(HP* pc);
//向上调整
void AdjustUp(HPDataType* p, int child);
//向下调整
AdjustDown(HPDataType* p, int n, int parent);
//获取堆顶元素
HPDataType HeapTop(HP* pc);

Heap.c

#define _CRT_SECURE_NO_WARNINGS 1

#include "Heap.h"

void HeapInit(HP* pc)
{	
	assert(pc);
	pc->capacity = pc->size = 0;
	pc->p = NULL;
}

void HeapPrint(HP* pc)
{	
	assert(pc);
	for (int i = 0; i < pc->size; i++)
	{
		printf("%d ", pc->p[i]);
	}
	printf("\n");
}

void HeapSwap(HPDataType* p1, HPDataType* p2)
{	
	assert(p1 && p2);
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
void AdjustUp(HPDataType* p, int child)
{	
	assert(p);
	int parent = (child - 1) / 2;
	while (child >0)
	{
		//大于父亲节点就调整
		if (p[child] > p[parent])
		{
			HeapSwap(&p[child], &p[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
			break;
	}
}

void HeapPush(HP* pc, HPDataType x)
{
	assert(pc);
	//扩容
	if (pc->capacity == pc->size)
	{
		int newcapacity = pc->capacity == 0 ? 4 : pc->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(pc->p, sizeof(HPDataType) * newcapacity);
		if (tmp == NULL)
		{
			printf("realloc failed\n");
			exit(-1);
		}
		pc->p = tmp;
		pc->capacity = newcapacity;
	}
	pc->p[pc->size] = x;
	pc->size++;
	AdjustUp(pc->p, pc->size-1);
}

bool HeapEmpty(HP* pc)
{
	assert(pc);

	return pc->size == 0;
}

AdjustDown(HPDataType* p, int n, int parent)
{	
	//左孩子
	int child = parent * 2 + 1;
	while (child < n)
	{	
		//判断是否有右孩子且右孩子大于左孩子
		if (child + 1 < n && p[child + 1] > p[child])
			++child;
		if (p[child] > p[parent])
		{
			HeapSwap(&p[child], &p[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
			break;
	}
}
void HeapPop(HP* pc)
{
	assert(pc && !HeapEmpty(pc));

	HeapSwap(&pc->p[pc->size - 1], &pc->p[0]);
	pc->size--;
	AdjustDown(pc->p, pc->size, 0);
}
HPDataType HeapTop(HP* pc)
{
	assert(pc && !HeapEmpty(pc));
	return pc->p[0];
}

void HeapDestroy(HP* pc)
{	
	assert(pc && !HeapEmpty(pc));
	
	free(pc->p);
	pc->capacity = pc->size = 0;
}

Test.c

#define _CRT_SECURE_NO_WARNINGS 1

#include "Heap.h"

void Heap()
{
	int arr[6] = { 70, 56, 30, 60, 25, 40};
	HP h;
	HeapInit(&h);
	//将数组的元素依次插入堆
	for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
	{
		HeapPush(&h, arr[i]);
	}
	HeapPrint(&h);

	HeapPop(&h);
	HeapPrint(&h);

	HeapDestroy(&h);
}
int main()
{	
	Heap();

	return 0;
}
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寄一片海给你

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值