MATLAB/Simulink中搭建/仿真Nakagami-m信道(1)

本文详细解释了Nakagami-m衰落信道如何通过参数m模拟不同信道特性,从单边Gaussian到Rayleigh,再到无衰落,同时介绍了Simulink模型中的基本搭建。重点在于信道衰落程度的调整与实际应用场景的结合。
摘要由CSDN通过智能技术生成

首先,通过改变Nakagami-m衰落信道的参数m可以灵活的拟合不同程度的衰落程度,简而言之,m不同,Nakagami-m信道就可以转化为不同的信道模型,例如高斯或者瑞丽衰落信道。

1、一些理论知识:

Nakagami-m 分布的概率密度函数为:

其中,m=E^{2}(A^{2})/var(A^{2}),   表示衰落因子;

          \Omega =E(A^{2})   ,   表示信号平均功率;

              为伽马函数。

开头说到了m的不同可以变为不同的信道,具体来说:

(1)当 m=0. 5时,Nakagami-m 分布成为单边 Gaussian 分布;

(2)当 m=1时,Nakagami-m 分布即为 Rayleigh 分布;

(3)m 越大,对应的信道衰落越小,m= ∞ 时表示没有衰落;

(4)多个独立 Rayleigh 变量之和服从 Nakagami-m 分布;

(5)如果信号的包络服从衰落因子为 m(m 为整数)的Nakagami-m 分布,那么对应的功率服从 Gamma 分布;

(6)如果令m=(K+1)^{2}/(2K+1) ,那么 Nakagami-m 分布近似于 Rice 分布。

2、搭建模型:(最具一般性的基础模型)

在理论基础上,在Simulink中进行系统模型的搭建,最基础的框架如下:

 其中,混沌序列的生成部分如下:

Subsystem1 模块是信道环境,这里将 Nakagami-m 衰落信 道封装在此模块中,命名为 IN1OUT1:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值