指定GPU跑模型

加上一个CUDA_VISIBLE_DEVICES=0,2就行了,使用0卡和2卡跑模型,注意多卡有时候比单卡慢,4090无NVlink,数据似乎是通过串行的方式传输到多个gpu的,只不过单个gpu是并行计算,数据在gpu与gpu之间似乎是串行传输的,如果第一个卡的显存实在是太过于紧张,只有几十mb可用也可能导致cuda out of memory!
指定0卡和2卡

CUDA_VISIBLE_DEVICES=0,2 python main.py

指定2卡

CUDA_VISIBLE_DEVICES=2 python main.py

----->
确保CUDA可用,安装了与cuda对应的pytorch

import torch
print(torch.cuda.is_available())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dareu_4523

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值