VAE和Stable Diffusion的关系


VAE(变分自编码器)Stable Diffusion 有密切关系,尤其体现在其 编码器和解码器结构上,但它们并不完全等同。


✅ 简单回顾:什么是 VAE?

变分自编码器(VAE) 是一种生成模型,结构包含:

  1. 编码器(Encoder):将输入数据编码为潜在空间中的分布(而不是一个点),即输出均值和方差;
  2. 重参数化技巧(Reparameterization Trick):从这个分布中采样潜在变量;
  3. 解码器(Decoder):从潜在变量中重构出原始数据;
  4. KL 散度损失:用来让编码分布接近标准正态分布。

🔄 Stable Diffusion 和 VAE 的关系:

Stable Diffusion 中,VAE 的角色主要体现在数据预处理和还原:

🎯 编码器:
  • 输入一张真实图像;
  • 编码成 潜在空间中的一个“紧凑表征”(一个更小的 latent image);
  • 这个 latent image 是接下来扩散过程的输入。
💥 解码器:
  • 当扩散过程完成后(得到一个 denoised latent 表征);
  • 用解码器将 latent image 还原为最终的图像。

这个过程就是 Stable Diffusion 中的 VAE


🤔 那 Stable Diffusion 本身是 VAE 吗?

不是。

  • Stable Diffusion 是基于 扩散模型(Diffusion Models) 的,它的核心是逐步去噪的过程;
  • 它的 潜在空间编码器和解码器 是借用了 VAE 的结构思路;
  • 但主要的建模能力来自 U-Net 模型 + 噪声预测(denoising),不是 VAE 的重参数化采样方式。

🧠 简要对比:

方面VAEStable Diffusion
核心机制编码-解码 + KL损失噪声建模 + 去噪采样
编码器输出高斯分布压缩图像为 latent
解码器重建图像从 latent 生成图像
潜变量使用显式使用 ( z \sim N(\mu, \sigma^2) )在 latent space 上运行扩散

画个结构图或者进一步讲讲 latent space 和扩散过程的交互
在这里插入图片描述

### Stable Diffusion中的VAE实现与应用 #### VAEStable Diffusion中的角色 变分自编码器(Variational Autoencoder, VAE) 是Stable Diffusion模型架构的重要组成部分之一。其主要功能是在图像生成过程中起到降维升维的作用,即先将输入图片压缩成低维度的潜在空间表示(latent space representation),再解码回高分辨率图像[^1]。 #### 编码过程 当使用Stable Diffusion进行图像生成时,原始图像首先会被送入预训练好的VAE编码器部分。该编码器会学习如何有效地捕捉并表达图像的关键特征到一个紧凑而有意义的向量形式——这就是所谓的潜变量(latents)。 ```cpp // Pseudo-code for encoding process using stable-diffusion.cpp API std::vector<float> encodeImageToLatents(const cv::Mat& inputImage){ // Convert image to tensor format suitable for model inference auto tensorInput = convertImageToTensor(inputImage); // Perform forward pass through the encoder part of VAE std::vector<float> latents; vaeEncoder.forward(tensorInput, &latents); return latents; } ``` #### 解码过程 一旦获得了这些潜变量,在实际生成新图象之前还需要通过对应的VAE解码器将其转换回来成为完整的像素级数据流。此步骤能够确保最终输出既保留了原图的核心特性又具备足够的随机性创造性。 ```cpp // Pseudo-code for decoding process using stable-diffusion.cpp API cv::Mat decodeLatentsToImage(const std::vector<float>& latents){ // Prepare latent vector as input for decoder network auto tensorLatents = prepareForDecoder(latents); // Execute reverse transformation via VAE's decoder component float* reconstructedPixels; vaeDecoder.backward(tensorLatents, &reconstructedPixels); // Transform raw pixel values back into OpenCV matrix form return createImageFromRawData(reconstructedPixels); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hwg985

祝老板生意兴隆,财源广进

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值