当然,GRU(Gated Recurrent Unit,门控循环单元)是一种改进的循环神经网络(RNN)结构,它引入了门控机制来更好地控制信息的流动,从而解决了传统RNN在处理长序列数据时存在的梯度消失和梯度爆炸问题。GRU由Cho等人在2014年提出,是一种简化的LSTM(长短期记忆网络),具有较少的参数但性能相当。以下是GRU的详细讲解和公式推导:
GRU结构
GRU包括两个门(重置门和更新门)以及一个候选隐藏状态。通过这些门,GRU可以控制信息的更新和遗忘,具体如下:
- 重置门(reset gate):决定了上一时刻的隐藏状态有多少信息被写入候选隐藏状态。
- 更新门(update gate):决定了上一时刻的隐藏状态有多少信息被保留到当前时刻的隐藏状态。
- 候选隐藏状态(candidate hidden state):结合当前输入和经过重置的上一时刻隐藏状态生成的候选状态。
公式推导
以下是GRU各个步骤的详细公式:
-
重置门:
[
r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r)
]- (r_t) 是重置门的输出。
- (\sigma) 是sigmoid函数。
- (W_r) 是权重矩阵,([h_{t-1}, x_t]) 是上一时刻的