CNN RNN 与transformer简介

CNN RNN 与transformer简介

三者之间的区别与一些通俗解释。


前言

帮助我们简单且快速的理解

一、CNN

CNN(卷积神经网络):
CNN主要用于处理图像数据,但也可以用于处理序列数据。它的设计灵感来自于生物学上对视觉皮层的理解。CNN通过在输入数据上使用卷积操作来提取特征,然后通过池化操作减少特征映射的大小。这些特征映射然后传递给全连接层进行分类或其他任务。CNN在图像分类、目标检测等任务中表现出色。

1.CNN如何提取特征

CNN(卷积神经网络)之所以能够有效地提取特征,主要是因为它利用了卷积操作的特性以及共享参数的思想。在图像处理中,卷积(Convolution)是一种操作,它将一个小的滤波器(也称为卷积核)应用于图像的每个位置。这个卷积核是一个小的矩阵,它包含了一些权重。在每个位置,卷积核都会与图像的对应像素值进行乘法运算,并将结果相加,最终形成一个新的输出图像。卷积操作有助于提取图像中的特征,比如边缘、纹理等。通过在整个图像上移动卷积核,我们可以在图像中捕捉到不同位置的特征。
局部感知原理:
卷积操作可以理解为将一个小的窗口(卷积核)在输入数据上滑动,每次只处理一个局部区域。这意味着卷积层在处理数据时只关注局部信息,而不是整个输入。这符合了很多自然数据的特点,比如图像中的局部结构和空间相关性。
参数共享:
卷积核在整个输入上进行滑动,对于每个位置都使用相同的权重参数。这意味着,无论卷积核在图像的哪个位置,它所学习到的特征提取方式都是相同的。这种参数共享大大减少了需要学习的参数数量,从而减小了模型的复杂度,提高了模型的泛化能力。

通过这两个原理,CNN能够有效地提取数据中的局部特征,并且在整个输入数据上共享这些特征提取方式。这使得CNN在处理图像等数据时具有很好的性能,可以有效地捕捉到数据的空间结构和层次特征。

2.简单举例

假设你正在处理一张黑白的图片,图片中有一只猫。现在我们想要让计算机识别出这只猫。而CNN就是用来帮助计算机理解图片中的特征的。
局部感知原理:
想象一下,你在观察这张猫的图片时,不是一次性看整张图片,而是通过移动一个小窗口来逐个观察图片的不同部分。比如,你先把注意力集中在猫的眼睛上,然后慢慢向下移动,观察到鼻子、嘴巴等部位。这种逐步观察局部信息的方式就像CNN中的卷积操作,它通过在图像上滑动小的卷积核来获取局部信息。
参数共享:
在观察这只猫的不同部位时,你可能会发现,无论是眼睛还是嘴巴,它们都有一些共同的特征,比如边缘、纹理等。这就好比是CNN中的参数共享,即卷积核在不同位置学习到的特征是相同的。这样,当CNN在处理图片时,它可以利用这些共享的特征来更好地理解图片,而不需要为每个位置都学习不同的特征。
通过这个例子,能够更容易地理解CNN如何通过卷积操作提取特征。它的本质就是通过局部感知和参数共享来有效地捕捉图像中的特征,从而实现对图像内容的理解和识别。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值