PAT-A1044 Shopping in Mars (25 分)

A1044 Shopping in Mars (25 分)

Shopping in Mars is quite a different experience. The Mars people pay by chained diamonds. Each diamond has a value (in Mars dollars M$). When making the payment, the chain can be cut at any position for only once and some of the diamonds are taken off the chain one by one. Once a diamond is off the chain, it cannot be taken back. For example, if we have a chain of 8 diamonds with values M$3, 2, 1, 5, 4, 6, 8, 7, and we must pay M$15. We may have 3 options:

  1. Cut the chain between 4 and 6, and take off the diamonds from the position 1 to 5 (with values 3+2+1+5+4=15).
  2. Cut before 5 or after 6, and take off the diamonds from the position 4 to 6 (with values 5+4+6=15).
  3. Cut before 8, and take off the diamonds from the position 7 to 8 (with values 8+7=15).

Now given the chain of diamond values and the amount that a customer has to pay, you are supposed to list all the paying options for the customer.

If it is impossible to pay the exact amount, you must suggest solutions with minimum lost.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 numbers: N (≤105), the total number of diamonds on the chain, and M (≤108), the amount that the customer has to pay. Then the next line contains N positive numbers D1⋯D**N (D**i≤103 for all i=1,⋯,N) which are the values of the diamonds. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print i-j in a line for each pair of ij such that Di + … + Dj = M. Note that if there are more than one solution, all the solutions must be printed in increasing order of i.

If there is no solution, output i-j for pairs of ij such that Di + … + Dj >M with (Di + … + DjM) minimized. Again all the solutions must be printed in increasing order of i.

It is guaranteed that the total value of diamonds is sufficient to pay the given amount.

Sample Input 1:

16 15
3 2 1 5 4 6 8 7 16 10 15 11 9 12 14 13结尾无空行

Sample Output 1:

1-5
4-6
7-8
11-11结尾无空行

Sample Input 2:

5 13
2 4 5 7 9结尾无空行

Sample Output 2:

2-4
4-5

分析:

这道题目和很早之前做过的一道最短路径的题目在某些点上有些相似,当然啦,那道比这道简单很多惹

这道题目我虽然读明白了题目,但也是无从下手,最后借鉴了算法笔记上的做法

题目思路:

  • 一种是序列中恰好有相加起来能和M相等的数
  • 二是没有和M相等的数,要找超过M的最小数

这道题暴力破解的话会超时,如果在接收值的时候先将它们各自1-i的值加起来,形成一个递增序列,可以减小复杂度

当然,这里面还有很多的点需要注意,像返回在[L,R]内第一个大于x的位置的方法,找最大相似值,输出下标。。。

代码如下:

#include<cstdio>
const int maxn=100010;
int m,n,nearn=100000010;
int num[maxn];
int upper_bound(int L,int R,int x){//返回在[L,R]内第一个大于x的位置 
	int left=L,right=R,mid;
	while(left<right){
		mid=(left+right)/2;
		if(num[mid]>x) right=mid;
		else left=mid+1;
	}
	return left;
}
int main(){
	num[0]=0;//初始化 
	scanf("%d%d",&m,&n);
	for(int i=1;i<=m;i++){
		scanf("%d",&num[i]);
		num[i]+=num[i-1];//求每个数当前的总和 
	}
	//枚举左顶点
	for(int i=1;i<=m;i++){
		int j=upper_bound(i,m+1,num[i-1]+n);//找右端点
		if(num[j-1]-num[i-1]==n){
			nearn=n;//有相等的值 
			break;
		}else if(j<=m&&num[j]-num[i-1]<nearn){
			//找最大相似值
			nearn=num[j]-num[i-1]; //找到最大相似值 
		}
	} 
	for(int i=1;i<=m;i++){
		int j=upper_bound(i,m+1,nearn+num[i-1]);
		if(num[j-1]-num[i-1]==nearn) printf("%d-%d\n",i,j-1);
	}
	return 0;
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值